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Abstract 

This thesis investigates incorporating different stages and levels of automation 

with varying degrees of reliability into a remotely piloted aircraft (RPA) surveillance task 

in order to determine how automation implementation and reliability affect operator 

workload and system performance.  The study uses IMPRINT discrete event simulation 

to evaluate three levels of reliability in twelve different baseline automation 

implementations within a remotely piloted vehicle task.  Three stages and four levels are 

modeled, for a total of twelve combinations, along with a baseline task with no 

automation.  The stages modeled are the information acquisition stage, the decision and 

action selection stage, and the action implementation stage, coupled with the automation 

recommendation level, the operator consent level, the operator veto level, and the fully 

automatic level.  The reliability is assessed at 100%, with reduced reliabilities of 80%, 

70%, and 60%.  This study finds that stages of automation have greater impact on 

performance and the workload values than levels of automation.  Automation with 

reduced reliability is found to have significantly reduced performance for all stages 

except the response stage models.  However, reductions in reliability are found to have 

little impact on operator workload. 
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THE EFFECT OF AUTOMATION AND RELIABILITY ON REMOTELY 

PILOTED AIRCRAFT OPERATIONS 

 
I.  Introduction 

Chapter Overview 

This chapter begins by covering the background of Remotely Piloted Aircraft 

(RPA).   It then focuses on the problem of high workload in RPA operations and the 

solution of building automation into the system.  Next, it discusses the questions of how 

to incorporate automation into the design of RPAs.  After the questions have been 

presented, this chapter focuses on the best course of action to answer the questions.  

Lastly, the chapter addresses the assumptions associated with this research, followed by 

an overview of the rest of the chapters.  

Background 

Remotely Piloted Aircraft (RPA) have been considered as a possible alternative to 

manned flight for many years.  The idea of having a pilotless plane was examined for 

operations as early as World War I.  Once World War I ended, the project to develop a 

pilotless aircraft was discontinued in 1925 due to a lack of motivation and need for a new 

weapon (Van Cleave, 2003).  When World War II started, the interest in pilotless planes 

returned and was strengthened even further during the Vietnam War.  The Firebee, a 

pilotless plane, was one of the principal aircraft used in Vietnam “for reconnaissance, 

surveillance, and some electronic intelligence gathering tasks” (Van Cleave, 2003).  

Unfortunately, the process of gathering the intelligence from the videos took such a long 
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time during the Vietnam War that once the intelligence was received by the troops in that 

area, it was usually outdated.  Even so, the Firebee remained in the air, with 

modifications in the early 2000s allowing it to deliver payloads to the enemy.  The 

Firebee illustrates the versatility of RPAs in their ability to adapt to changing 

circumstances and continues to fly to this day (Van Cleave, 2003; Gertler, 2012). 

According to the Department of Defense (DOD), the rationale behind the 

development of RPAs falls under three situations: the “dull, the dirty, and the dangerous” 

(Van Cleave, 2003).  The “dull” situation applies to any duty where there is a need for 

continuous surveillance over a certain target for a long period of time.  The “dirty” 

situation applies to any time where the military would need to fly into areas contaminated 

with chemical, nuclear, or biological weapons.  The “dangerous” situation applies to any 

circumstance where a mission poses immediate danger to flying personnel such as a close 

combat air support mission (Van Cleave, 2003). 

RPAs, with missions such as reconnaissance, surveillance, and payload delivery, 

received more attention from the United States government in 2000 due to the advantages 

of RPAs in the Iraq and Afghanistan wars (Gertler, 2012).  The United States Congress 

started to provide more funding for RPA conception and development, pushing the DOD 

to increase the pace of RPA acquisition (Gertler, 2012).  As a result of the increased 

acquisition pace, the Predator was a rushed program and became operationally capable 

only 30 months after its conception stage (Van Cleave, 2003).  Other RPAs like the 

Global Hawk and the Reaper joined the Firebee and the Predator on the battlefield, 

adding to the various types of missions RPAs could complete.  RPA missions are not just 

limited to the United States Air Force; the Navy and Marines are also investigating how 
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they could use the unique capabilities of the RPA to better complete their missions 

(Gertler, 2012). 

In recent years, Congress has pushed for more RPAs but pilots have been in short 

supply due to the increased mission load coupled with declining military end strength 

(number of congressionally authorized personnel) (Gertler, 2012).  Currently, each RPA 

is operated by two individuals, the first piloting the plane and the second manning the 

sensor(s) (Gertler, 2012).  In order to continue the growth of the RPA field, changes need 

to be made to counteract the pilot shortage.  RPA operators are being heavily recruited to 

ease the amount of time each operator spends flying each day.  If RPA designers were 

able to lower the operator’s workload to a level where they could control more than one 

RPA at a time without becoming overworked, then those operators could fly more sorties 

during the same length of time.  Even if the reduction was slight and the operator could 

only take on multiple RPAs at specific times, such as the time spent flying to and from 

the location of interest, the productivity of a single operator would still increase. 

Problem Statement 

For some years now, automation has been the leading solution to the problem of 

high operator workload.  Many different variations of automation have been attempted, 

with some more successful than others.  The most difficult part of incorporating 

automation lies not in the creation of automation, but in the implementation of it.  

Implementing automation towards a specific goal can have a number of potential 

solutions, some better than others. For example, if the operator is trying to make a phone 

call, implementing automation could make it quicker or easier to dial the phone number.  
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Ways of implementing that automation could take the form of including numbers 

associated with names, numbers associated with buttons, numbers associated with voice 

recognition, or any other number of ways to aid the operator.  Incorporating automation 

to provide the best results is the designer goal.  In some cases, automation causes the 

system to perform worse, in which case the automation should not be implemented.  Not 

all automation is created with the same benefits, so the designer must choose the correct 

benefits to build a successful system. 

 When dealing with an automated system, successful system performance is 

directly related to the amount of automation that is incorporated and the type of tasks the 

automation assumes.  The amount of automation may affect the operator situation 

awareness (SA), operator workload, the results due to automation error, or a combination 

of these.  The intent is to try and build the correct amount of automation so that the 

operator workload is not too high or low.  The correct amount of automation will also 

allow the operator to have enough SA to intervene when the automation fails, and keep 

the system from entering an undesirable state as a result to automation error.  The 

automation can assume many different types of tasks; however, not all tasks should be 

automated.  If the designer can interpret the need and decide which tasks are best for 

automation to take over and complete, then it can be enormously helpful to the operator.  

If the designer creates automation to take over the wrong tasks (as deemed by the 

operator), then it may add even more workload to the operator.  Furthermore, if 

automation is set to take over the wrong task, there could be disastrous results (operator 

errors or mission failures), thus system designers should seek to avoid this whenever 
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possible.  By attempting to define the best ways to incorporate automation into the RPAs, 

operators will have a system that is easier to control. 

Research Objective 

In order to effectively use automation, first the designer must understand the 

implications of their design decisions.  Without an understanding of the implications, the 

designer can create a bad design in a variety of different ways.  Those bad designs can be 

avoided by understanding what implementations produce the best results.  By providing 

results for different implementations of automation to the designer, the designer will no 

longer have to guess at how to incorporate productive automation into the system.  This 

research aims to provide information that can aid in the construction of automation 

implementation specifically in the area of RPA operations by building a discrete event 

simulation (DES) to assess the impacts of implementing various types of automation.  

The DES took the form of a collection of models within the Improved Performance 

Research Integration Tool (IMPRINT) to evaluate the operator workload and 

performance during a surveillance RPA task.  The models were based off of subject data 

gathered from a study completed by the 711th Human Performance Wing. 

Investigative Questions 

In order to answer the overarching question of how automation can be implemented to 

aid the operator two questions need to be addressed: 

 

1. What stages and levels of automation reduce operator workload and increase 

performance in the surveillance task? 
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Sheridan and Verplank (1978) discuss ten levels of automation, ranging from fully 

automated to fully manual.  Parasuraman, Sheridan, and Wickens expand on Sheridan 

and Verplank’s ten levels by crossing them with the four stages of information processing 

in an automated system (Parasuraman, Sheridan, & Wickens, 2000).  This research 

incorporates those stages and levels of automation into a DES model.  The model then 

simulates the effect that a change in stages and levels has upon the performance of the 

system and the workload of the operator.  Six hypotheses were created to answer this 

question.  The six hypotheses are as follows: 

1) All of the automated models will have statistically significant improved 

performance from the baseline. 

2) Each of the stages will have statistically different performance from one 

another. 

3) As the level of automation increases, the performance will also increase. 

4) All of the automated models will have statistically significant reduced 

workload from the baseline. 

5) Each of the stages will have statistically different operator workload from one 

another. 

6) As the level of automation increases, the workload will decrease. 

 

2. How does the level of reliability of the automation affect the workload and 

performance of the user during the surveillance task? 

Reliability in the automation can have a large effect on the automation’s 

effectiveness.  If the reliability is low, incorporating the automation may lead to less 
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effective system results than a system without automation or to a potential increase in 

operator workload.  If the reliability is high, incorporating the automation could provide 

assistance to the operator by increasing performance or reducing workload.  This research 

provides an illustration of the relationship between reliability, stages and levels of 

automation, and two system metrics: performance and workload.  Eight hypotheses were 

created to answer this question.  The eight hypotheses are as follows: 

1. Set 1 (System Performance Hypotheses) 

1) All of the models at 60% reliability will have significantly reduced 

performance when compared to the baseline with no automation. 

2) All of the models at 80%, 70%, and 60% will have significantly 

reduced performance when compared to their respective 100% model. 

3) The performance differences between stages will be significantly 

affected by changes in the reliability measures. 

4) The performance differences between levels will be significantly 

affected by changes in the reliability measures. 

2. Set 2 (Operator Workload Hypotheses) 

5) All of the models at 60% reliability and above will have significantly 

reduced workload when compared to the baseline with no automation. 

6) All of the models at 80%, 70%, and 60% will have significantly 

increased workload when compared to their respective 100% model. 

7) The workload differences between stages will be significantly affected 

by changes in the reliability measures. 
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8) The workload differences between levels will be significantly affected 

by changes in the reliability measures. 

Methodology 

A DES was built using IMPRINT to model the effects of automation on operator 

cognitive workload and system performance.  The baseline DES represented the tasks 

performed by human subjects enrolled in a study performed by the Human Universal 

Measurement and Assessment Network (HUMAN) Lab at the Air Force Research 

Laboratory, Wright-Patterson Air Force Base.  The DES provided a continuous workload 

profile for the operators performing RPA tasks in a virtual environment.  Human research 

and prototyping of automation, while producing valuable information, is expensive, 

tedious, and lengthy to complete.  Creating a model of the human participants not only 

produces cost and time savings, but also permits greater exploration of alternative design 

options.  The model was validated against the performance and subjective workload data 

from the HUMAN Lab experiment.  The validated baseline model was then modified to 

model the implementation of automation on the human subjects. 

Assumptions 

This research is based on a previous human-in-the-loop study and thus assumes 

that the human participants and the task are sufficiently representative of RPA operators 

and operations to effectively evaluate performance and workload impacts of automation.  

No additional data will be collected beyond the data gathered in the study.  Furthermore, 

the data are gathered under the assumption that the participants attempted the task with 

their best effort.  While the participants are non-experts within a virtual environment, the 
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performance scores and experienced workload that is contained within the model is 

assumed to be representative of the workload and performance experienced by current 

RPA operators.   Due to the prior training participants received using the software and 

hardware relevant to the study and due to the counterbalancing used between each 

participant, it is assumed that no learning effects affected the data. 

Preview 

This chapter began with the background of RPAs and described a problem that 

needs to be addressed within the RPA community and solved using automation.  Chapter 

II contains a literature review of the relevant articles, conference submissions, and theses 

surrounding the topics of automation, RPAs, and reliability.  Chapter III addresses the 

first investigative question by identifying the stages and levels of automation that have 

the largest impact on reducing operator workload and increasing system performance.  

Chapter IV addresses the second investigative question by identifying the effect of 

various levels of reliability on operator workload and system performance.  Chapter V 

contains a summary of the results gathered from the research as well as potential future 

research to be conducted as a result of this study’s findings. 
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II. Literature Review 

Chapter Overview 

With the rise of more complex systems, automation has become an integral part of 

system success.  Automation with regards to Remotely Piloted Aircraft (RPA) is a 

growing field, as researchers continue to advance the technology and understand better 

techniques to aid the pilots during flight.  This chapter begins by giving a brief overview 

of the best way to allocate functions to machines.  Next, it discusses how RPAs and 

automation relate to each other, followed by a discussion about the effect of automation 

on the operator.  This chapter then explains the advantages and disadvantages of 

automation, which leads into the effect of different stages and levels of automation and 

automation reliability.  The following topic is a brief history of the Visual, Auditory, 

Cognitive, and Psychomotor (VACP) model used to calculate operator workload within 

the Improved Performance Research Integration Tool (IMPRINT), which leads into the 

research gap that this work fills.  Lastly, this chapter closes with a short conclusion on all 

of the topics that were discussed. 

Function Allocation 

Automation is contained in almost any system.  As defined by Parasuraman et al., 

automation “refers to the full or partial replacement of a function previously carried out 

by the human operator” (2000), such as a calculation performed by a computer instead of 

a human.  Automation was not always integrated into most man-made systems but when 

systems began to grow in scope and complexity, automation of tasks previously 

completed by humans became more of a necessity.  In 1951, Fitts created a list comprised 
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of six different tasks that humans performed better than machines and five different tasks 

machines performed better than humans, shown in Table 1 (Fitts, 1951).  

    

Table 1: List of tasks best suited to humans or machines – adapted from (Fitts, 

1951) 

Humans excel in: Current machines excel in: 

Ability to detect a small amount of visual or 
acoustic energy 

Ability to respond quickly to control signals, 
and to apply great force smoothly and 
precisely 

Ability to perceive patterns of light or sound Ability to perform repetitive, routine tasks 
Ability to improvise and use flexible 
procedures 

Ability to store information briefly and the to 
erase it completely 

Ability to store very large amounts of 
information for long periods and to recall 
relevant facts at the appropriate time 

Ability to reason deductively, including 
computational ability 

Ability to reason inductively Ability to handle highly complex operations, 
i.e. to do many different things at once 

Ability to exercise judgment  
 

 

This list became a cornerstone of the automation research moving forward.  

Although Fitts’ List was created in 1951 and has been around for 65 years, it still remains 

a powerful tool to use when deciding on specific functions to automate.  For example, the 

list defies the common misconception that humans should monitor systems, as Fitts 

explains that machines are better than humans in performing routine tasks, such as 

monitoring a system (Fitts, 1951).  There are exceptions to that rule, but overall Fitts 

suggests that machines and humans have certain tasks where one performs better than the 

other. 
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RPA Automation 

Although originally applied to analyze air traffic control, Fitts’ List can be applied 

to many systems that require automation, such as RPAs.  As RPAs grew in complexity, 

more workload demand was placed on the operators during certain phases of flight.  

Historically, reports of RPA mishaps in the field of 1-2 orders of magnitude higher than 

manned flight illustrate the importance of recognizing the cognitive demand placed on 

the operators (Tvaryanas, Thompson, & Constable, 2006).  Because of the high order of 

mishaps and the emerging progression towards heavier RPA use, researchers are 

directing their research towards developing an automated RPA system that supports an 

operator and reduces system errors to a minimum (Kaber, Stoll, & Thurow, 2007).  One 

piece of research investigated a system that contains multiple aircraft for every person 

(De Visser, et al., 2008).  By reversing the trend of relying on multiple people to fly a 

single aircraft, the military would greatly reduce manning costs, and reduce the stress on 

the current cadre of RPA operators, reducing their current work hours and permitting 

career advancement.  Reducing the amount of required operators, whether that reduction 

is from two down to one or a team of three or more down to only two, requires a superior 

understanding of when, where, and how to incorporate automation into RPA operations.   

Effect of Automation on Operator 

A broad range of actions have been covered by automation in recent years, 

consisting of everything from dialing a number on a cell phone to an autopilot flying an 

airplane.  While automation does relieve the human from completing whatever action 

needs attention, automation does not completely remove the action from the workload of 
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the human.  When automation is present, a human is usually overseeing the action 

performed as verification that the action is being completed.  Because of this change from 

a worker to a monitor, the human does not fully shed the task.  This causes the task to 

change from one form of workload to another, often resulting in a decreased amount of 

workload.  This effect shows that automation can be useful when designers find a way to 

reduce workload, but researchers have yet to quantify the difference in the workload 

change.  Consequently, understanding the new amount of tasks an operator could handle 

is still unknown. 

Before any automation can be incorporated into the system, the system designers 

need to be able to identify when the automation should come into effect.  If the designer 

incorporates too much automation, then the operator may experience underload, in which 

they might lose situation awareness (SA), negatively impacting performance.  If the 

designer incorporates too little automation, then the operator workload can become 

excessive, again negatively impacting performance (De Visser, et al., 2008).  Automation 

fixed problems that arose because it could control some of the more mundane tasks, but 

also opened the doors to a host of new problems, including issues with situation 

awareness, trust, complacency, decision-bias, and fluctuations in workload (De Visser, et 

al., 2008).  To combat any tendencies towards these negative issues, the goal of a 

designer is to pinpoint the state where the operator is working enough to still have SA but 

is not overexerted to the point that performance suffers (Rusnock & Geiger, 2014).  In 

order to pinpoint where the operator needs help, the cognitive workload of the operator 

needs to be captured.  
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Automation Advantages and Disadvantages 

Automation provides some unique advantages and disadvantages.  One advantage 

is a general reduction in human error.  By moving human interaction with the system into 

a monitoring position, the human participation in the task is reduced (Swanson, et al., 

2012).  With the human slightly removed from the task, the accompanying human error is 

normally lessened.  Also, when the automation is incorporated correctly, the overall task 

load of the operator will be reduced.  By reducing the human’s task load, the human 

operator is able to focus on other tasks that may improve overall system performance. 

One of the disadvantages of automation arises when the human is missing vital 

pieces of information about the process or situation.  If automation takes over every 

process, then the human cannot participate when the automation fails because the human 

lacks appropriate SA.  Not only is SA lost, but reduced interaction with the system can 

lead to a loss of skill with regards to effectively operating the system.  Automation can 

also potentially cause an increase in workload because of the added communication 

between the system and the operator.  Examples of automation communication include: 

informing the operator of task completion, asking the operator for permission to complete 

an action, or asking the operator to choose between alternatives.   

Trust in automation is another disadvantage that can become a problem.  If the 

operator places excess amounts of trust in the automation, then some incorrect actions 

may be executed by the automation without any knowledge from the operator that the 

results were incorrect.  If the operator places too little trust in the automation, then more 

time will be spent by the operator verifying or re-doing work previously completed by the 

automation (Cring & Lenfestey, 2009). 
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As mentioned above, a reduction in human error is expected when automation is 

implemented.  Clumsy implementation of automation may, however, lead to an increase 

in human error (Woods, Johannesen, Cook, & Sarter, 1994).  New burdens may be 

unintentionally placed on the operator, creating more problems and more opportunities 

for error, along with the expected benefits provided by the automation (Woods, 

Johannesen, Cook, & Sarter, 1994).  For example, if automation is only built to 

accommodate routine scenarios, then latent problems may arise when a scenario appears 

that was not covered.  These latent problems could then emerge when the human works 

through the scenario (Woods, Johannesen, Cook, & Sarter, 1994).  That scenario may 

never occur, but the possibility of it happening leads to an added possibility of human 

error due to the clumsy implementation of automation. 

Stages and Levels of Automation 

To understand the different ways to apply automation to a system, researchers 

look to the human information processing model (Broadbent, 1958).  The act of human 

information processing occurs in four stages, shown in Figure 1 (Parasuraman, Sheridan, 

& Wickens, 2000).   

 

 

Figure 1: Human Information Processing Model – adapted from (Parasuraman, 

Sheridan, & Wickens, 2000) 
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In the first stage, Sensory Processing, the five senses gather information from the 

outside world and send the information to the brain.  Each one of the senses receives 

different types of relevant information.  In the second stage, Perception/Working 

Memory, the brain combines the information acquired by the different senses in the 

Sensory Processing stage with information in long-term memory to form a coherent 

picture of the environment.  Because of the large amount of information gathered from 

the senses, some of the information deemed less important is not consciously perceived, 

or is filtered out.  The Decision Making stage forms the third stage and consists of 

deciding on a course of action within that environment.  The Decision Making stage is 

based on the information in the Perception stage, thus decisions may be made on 

incomplete information.  The final stage is the Response Selection stage, which consists 

of completing the action decided upon in the Decision Making stage (Kaber, Stoll, & 

Thurow, 2007; Parasuraman, Sheridan, & Wickens, 2000) 

The four stages of processing describe human decision-making, but they correlate 

closely with system processing as well.  A system can complete the same tasks of 

gathering information, compiling relevant information, deciding on a course of action, 

and implementing that action.  Based upon those similar stages, machine tasks can also 

be grouped into a particular stage of machine processing, leading to the four stages of 

automation (Parasuraman, Sheridan, & Wickens, 2000).  The relationship between the 

two processing models is shown in Figure 2. 
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Figure 2: Comparable stages of processing models – adapted from (Parasuraman, 

Sheridan, & Wickens, 2000) 

 

In addition to the four types of automation, automation allocation can also be 

explained by the ten Levels of Automation (LOAs), proposed by Sheridan and Verplank 

(1978), describe the distribution of tasks which can be allocated to either the human or 

the automation.  The first level is considered to contain no automation because all tasks 

are allocated to the operator.  The tenth level is considered to be fully automated, without 

human interaction because all tasks are allocated to the automation.  The other levels 

contain varying amounts of automation between these two extremes.  Table 2 describes 

the ten levels of automation. 
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Table 2: Levels of Automation – adapted from (Sheridan & Verplank, 1978) 
 

 

 

Allowing the system designer to choose between different levels of automation 

within a system illustrates that automation is not just a choice between on or off, but 

instead exists along a continuum of varying degrees of automation.  Recognizing this 

continuum is important because different LOAs are expected to have different effects on 

performance and situation awareness.  For example, an LOA near the middle can 

improve performance and situation awareness, even as system complexity increases 

(Ruff, Calhoun, Draper, Fontejon, & Guilfoos, 2004).  Understanding that automation 

resides along a continuum allows system designers to manipulate the level and stage of 

automation to best fit the given scenario (Cummings, Bruni, Mercier, & Mitchell, 2007; 

Parasuraman, Sheridan, & Wickens, 2000; Endsley, 1999). 
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Reliability 

 Reliability causes many problems for system designers.  Low reliability can 

potentially offset helpful automation to the point that the operator’s job becomes more 

difficult rather than less.  When the less reliable automation is working directly against 

the goal of improving the system by reducing the performance of the system or increasing 

the workload of the operator, the system designer will need to make a choice to improve 

the reliability or remove the automation altogether.   

Reliability is also partly a function of system complexity.  As systems become 

more complex, the automation becomes more complex as well, leaving greater 

opportunities for unforeseen problems that could lead to a system failure.  This results in 

the “irony of automation” where, as the complexity of a system rises, human involvement 

becomes more critical due to unforeseen problems (Bainbridge, 1983). 

One recent reliability study in the RPA field focuses on the reliance and 

compliance of human dependence (Wickens & Dixon, 2006).  Reliance is the state of 

human dependence when the automation is quiet.  Compliance is the state of human 

dependence when the automation is alerting the human that something has potentially 

gone wrong.  Human reliance stays high when the automation has fewer misses, meaning 

that the human has more trust that the system is fine when the automation is quiet.  

Conversely, human compliance stays high when the automation produces fewer false 

alarms, meaning that the human has more trust in the automation to correctly identify 

when something has gone wrong.  When both metrics are high, the human experiences 

less cognitive workload because the human believes that the automation is handling the 

task well.  Both of these metrics are based on human perception, so there is potential for a 
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disconnect between actual automation performance and perceived automation 

performance.  The study performed by Dixon and Wickens (2006) illustrates the reliance 

and compliance of the human and how those two metrics may affect the reaction time of 

the human to any automation signals.  Dixon and Wickens found that when the 

automation produced more misses, the operator was quicker to notice them and fix them, 

but had trouble completing the concurrent tasks in a timely manner (less reliance).  When 

the automation produced more false alarms, the operator had a slower and less accurate 

response (less compliance) to the alarm but showed little change in the ability to 

complete the concurrent tasks.  

Reliance and compliance are important attributes for alarm-style automation 

systems; however, these attributes may be less relevant for other types of automation 

implementation.  For example, with RPA operations, the automation may help track a 

target.  This example does not fit in neatly with reliance and compliance which are geared 

towards alerts and alarms, thus reliance and compliance may be less helpful in 

determining the reliability of the automation.  Another way to look at reliability is the 

percentage of time that the automation does not fail, represented as a number from 0-

100% (Parasuraman, Molloy, & Singh, 1993).  A failure can represent any type of action 

taken by the automation that the operator did not expect or any type of halt in the 

automation sequence, where it cannot manage to complete assigned activities.  Previous 

automation studies have attempted to identify the point at which automation failure 

makes the system performance decrease and operator workload increase above the 

baseline of not having any automation at all.  One study has placed this number at 

approximately 70-75% reliability (Wickens & Dixon, 2006).  Thus, if the automation 
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fails more than 25-30% of the time, then the operator would have performed better 

without the automation.  However, the task being completed also has an impact on the 

effectiveness of the automation as the reliability is reduced.  John and Manes found that 

even automation reliabilities below 70% still may be helpful (John & Manes, 2002).  In 

their research, the goal of the operator was to locate a target while the automation would 

provide suggestions on places to look.  As the reliability was reduced below 70%, the 

automation was still helpful in aiding the operator.  Thus, the reliability threshold for 

which it begins to harm the workload and performance of the operator may depend on the 

task being completed.  Perhaps metrics including task completion times for the human 

and the automation, recovery time necessary in the event of a reliability failure and 

operator workload could be useful in further understanding this tradeoff.  System 

designers need to know at what threshold the automation reliability should stay above in 

order to help, rather than hinder, task performance. 

VACP Modeling Tool within IMPRINT 

In 1984, Wickens built upon the bottleneck and single resource workload theories 

to develop the multiple resource workload theory (Wickens, 1984).  As Wickens 

explained, the argument for the multiple resource workload theory was that information 

processing required multiple resources within the brain (Wickens, 1984; Keller, 2002).  

These resources included the visual, auditory, spatial, and verbal among others.  For 

example, scanning a crowd for a sibling is a task that uses visual resources.  Auditory 

resources may be used when listening to music, attempting to understand the lyrics.  We 

can accomplish any number of tasks at once as long as the combined information from 
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those tasks do not overload one of the resources.  Combining these two actions, listening 

to music and scanning a crowd for a sibling, is possible because they do not stem from 

the same resources within the brain.  However, listening to two conversations at once 

becomes very difficult because the auditory channel is becoming overloaded with similar 

information.  Building upon the basic idea of the multiple resource model, the VACP 

modeling tool identified four resource components: visual, auditory, cognitive, and 

psychomotor.  These four components are each characterized by a scale of demand 

levels, with values assigned by a pool of subject matter experts (McCracken & Aldrich, 

1984).  The psychomotor channel was then broken up into fine motor, gross motor, and 

tactile and the speech channel was added for a total of seven channels that are being used 

in the DES software tool IMPRINT.  This updated model is the device that captured the 

workload of the operators during this study and is the basis for all calculations regarding 

workload in this paper. 

Workload and performance have been studied together before in an effort to 

identify what happens to the performance as workload changes (Yerkes & Dodson, 1908; 

Donmez, Nehme, & Cummings, 2010; Clare, Hart, & Cummings, 2010).  These studies 

have found that when workload changes, performance is affected.  The change is not 

linear or monotonic, and performance will peak at a certain amount of workload before it 

begins to decline.  The amount of workload that results in peak performance seems to 

change as the task changes, so no specific guidelines have been able to predict 

performance for other tasks or other combinations of tasks.  
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Research Gap 

 Stages and levels of automation have been applied since 2000, when Parasuraman 

et al. explained the way that stages and levels could interact (Parasuraman, Sheridan, & 

Wickens, 2000).  Since then, stage and levels have been incorporated into research about 

manufacturing systems (Johansson, et al., 2009; Sheridan, 2011) or may have focused on 

SA (Furukawa, Inagaki, & Niwa, 2000).  In 2005, Wright and Kaber conducted an 

experiment that consisted of three stages of automation coupled with two levels of 

automation, similar to the experiment in this paper.  Measures of dependent variables 

centered on team effectiveness and team coordination, with the results indicating that 

both stages and levels had different effects on teamwork (Wright & Kaber, 2005).  In 

another experiment in 2003, the combination of another two independent variables, the 

level of automation and the automation reliability, was changed to measure the response 

of the operator (Meyer, Feinshreiber, & Parmet, 2003). 

 A similar experiment was conducted in 2007 (Rovira, McGarry, & Parasuraman, 

2007).  In their experiment, the human operator goal was to correctly select a friendly and 

enemy target to engage in combat.  The experiment modeled two different stages of 

automation, three different levels for a single stage, and two different levels of reliability.  

While the results are not directly translatable, they do suggest that with 60% reliability, 

both of the stages of automation show significantly reduced performance for all levels 

measured. 

This research aims to gather each of these research concepts together to develop a 

cohesive study that demonstrates the effect of changing stages and levels of automation 

and reliability upon operator workload and system performance within RPA operations.  
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While the studies mentioned above closely relate to this thesis, this thesis has a wider 

range of values for the stages, levels, and reliability of automation.  This is possible due 

to the nature of DES, which allows for multiple alternative scenarios to be created once 

the baseline model has been built, consuming fewer resources than a human subject 

experiment.  Much of the previous research built upon one or more of these same 

concepts, but few studies that combine RPA operations with different automation 

reliabilities, stages and levels of automation, the system performance, and the operator 

workload have been found.   

Summary 

Understanding the previous literature is a necessary step in fully understanding 

the problem.  This chapter focused on the development of automation, the concept of 

workload, and the relationship between the two.  The other topics discussed included 

topics related to the investigative questions and topics related to the tools used to create 

the models.  Understanding the different types and levels of automation will allow for the 

first investigative question to be answered.  The second investigative question focuses on 

reliability, discussed briefly in the automation section.  Finally, the research around this 

topic was explained, demonstrating a gap that needed to be filled.  The methodology will 

be addressed in the next chapter. 
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III. Modeling the Effects of Stages and Levels of Automation on Operator Workload 

and System Performance in RPA Operations 

Abstract 

 This paper simulates different stages and levels of automation within a remotely 

piloted aircraft (RPA) surveillance task and investigates how these simulated automation 

implementations affect operator workload and system performance.  The study uses 

discrete-event simulation (DES) to model the surveillance task in IMPRINT.  

Performance was measured based on a point system and workload was measured using 

the Visual, Auditory, Cognitive, and Psychomotor (VACP) model.  Three stages and four 

levels were modeled, for a total of twelve combinations, along with a baseline task with 

no automation.  The performance and the workload values were unaffected by the 

different levels of automation but were affected by the stage of automation.  Automation 

of the decision and action selection stage produced the largest increase in performance 

and automation of the action implementation stage produced the largest reduction in 

workload. 

Introduction 

Remotely Piloted Aircraft Use 

  In the past decade, use of remotely piloted vehicles has grown significantly.  As 

the flight hours and total number of sorties continued to grow, new challenges began to 

arise.  In the military, only current pilots were qualified to fly the RPAs but few wanted 

to leave the freedom of flight to sit confined on the ground while flying a remotely-

piloted aircraft.  Nevertheless, the role of the RPA continued to grow through the Global 
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War on Terror (GWOT), Operations Enduring Freedom (OEF), and Iraqi Freedom (OIF) 

(Callam, 2014).  Much of the focus on current and future missions is aimed at the 

removal of ISIS leaders, a mission well-suited to RPAs (Jones, 2014).  Actions such as 

these illustrate the effectiveness, importance, and responsibilities that RPAs have begun 

to assume. 

RPA use will continue to rise, but the size of the current military workforce is 

declining (Gertler, 2012).  To keep up with increased demand, RPAs will need to act as 

force multipliers, multiplying the benefits without increasing demands on manpower.  If 

additional automation can be effectively incorporated into RPA control systems, reduced 

workload may allow for a pilot to control multiple RPAs at the same time.  Increasing the 

quantity of RPAs while simultaneously reducing the quantity of pilots needed to fly them 

can enable increased mission rates while reducing manpower costs (Taylor, 2006). 

Motivation 

 System designers need to understand that automation consists of many possible 

implementations.  A solution that works well in one scenario may not work well in 

others.  The most influential automation implementation depends on the goals of the 

system and the system processes.  When designers incorporate automation into a system, 

they need to consider the implications of automation implementation.  This research 

investigates different automation options and assesses how those options impact the 

performance of the system and the workload of the operator within an RPA task. 



27 

Background 

Automation 

Automation is contained in almost any system.  As defined by Parasuraman et al. 

(2000), automation “refers to the full or partial replacement of a function previously 

carried out by the human operator.”  Automation is typically intended to reduce task load 

or increase operator efficiency.  Ideally, the automation allows for a balance to occur 

between the capabilities of the system, what the system can achieve, and the increasing 

demand on the human resources (Taylor, 2006).   

As automation is increasingly applied to divergent or non-algorithmic tasks within 

systems that are employed in unpredictable environments, the human operator’s tasks are 

not completely replaced by the automation.  Instead, the operator is asked to provide 

supervisory control of the system and adjust the automation or assume manual control 

during automation failures or during operational scenarios for which the automation is 

not designed.  As a result, the automation does not replace the operator but changes the 

nature of the operator’s tasks, as well as the exchange of information between the system 

and the operator.  In alternative designs, the automation and operator participate as a 

team, with the automation performing more mundane tasks, freeing the operator to 

perform tasks which require inductive reasoning or other tasks at which the human excels 

(Fitts, 1951). 

Current designers need to incorporate automation into RPA systems in order to 

allow for the RPA to function without overloading the operator.  For example, 

automation in UAVs might focus on flying the aircraft, permitting the operator to 
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perform critical mission tasks, such as monitoring the sensor feed and deploying 

armaments.   

Stages and Levels of Automation 

As automation replaces tasks performed by the human operator, replacement may 

include tasks related to any of the four stages of human information processing: Sensory 

Processing, Perception/Working Memory, Decision Making, and Response Selection.  

Sensory Processing gathers information from the outside world and provides it for higher 

level processing.  Perception/Working Memory synthesizes this information with 

remembered information to form an interpretation of the environment.  Decision Making 

relies upon the interpretation of the environment to decide upon a course of action.  

Response Selection completes the action decided upon in the Decision Making stage.  

When automated, the replacement technologies are referred to as Information 

Acquisition, Information Analysis, Decision and Action Selection and Action 

Implementation, respectively, shown in Figure 3 (Parasuraman, Sheridan, & Wickens, 

2000). 
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Figure 3: Stages of machine processing built from the human information 

processing model – adapted from (Parasuraman, Sheridan, & Wickens, 2000) 

 

 The replacement technology can automate each of the four stages of information 

processing along any one of ten levels of automation, as proposed by Sheridan and 

Verplank (1978).  These ten levels of automation (LOAs) are provided in Table 3. 
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Table 3: Levels of Automation (LOA) – adapted from (Sheridan & Verplank, 1978) 

 

 

The differences between these levels arise in how much responsibility the 

automation assumes when completing the task.  These levels give system designers 

flexibility when incorporating automation because the levels provide a range from fully 

manual to fully automatic.  These levels are then coupled with the machine information 

processing model by choosing a stage of automation and a level of automation to build a 

desired action.  For example, Level 3 coupled with the decision and action selection stage 

may form an automated action that provides alternatives to a decision the operator must 

make.  Note that in an automated system, each information processing stage can have a 

unique level of automation. By combining these 10 levels of automation with the four 
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levels of processing to be automated, 40 automation combinations are available for each 

human task to be automated (Parasuraman, Sheridan, & Wickens, 2000; Endsley, 1999). 

While these stages and levels have been used since 2000 to illustrate different 

automation implementations, a limited amount of research has been conducted to 

evaluate the effectiveness of each of these conditions on automation utility or efficiency.  

However, this limited research has included applications in manufacturing systems, 

power plant systems, or research about situation awareness (SA) (Johansson, et al., 2009; 

Sheridan, 2011; Furukawa, Inagaki, & Niwa, 2000).  A similar experiment to the one 

presented in this paper was conducted in 2007, which broke the stages and levels up into 

two different stages and three levels (Rovira, McGarry, & Parasuraman, 2007).  

Ultimately, stages and levels provide a uniform way to research and study different types 

of automation.  

While the studies mentioned above have explored stages and levels of automation, 

this paper explores a wider range of values for the stages and levels of automation.  This 

is possible due to the use of discrete event simulation, which allows for multiple 

alternative scenarios to be easily evaluated, consuming fewer resources than a human 

subject experiment. 

Purpose 

This paper aims to illustrate the effect of different stages and levels of automation 

upon the system performance and operator workload and highlight any automation 

implementations that yield better results than others.  This research will aid system 

designers when making decisions regarding automation implementation.   
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 This paper addresses six hypotheses.  Three hypotheses focus on operator 

workload and three focus on system performance.  Each set of three assesses the same 

independent variables: the first addresses the difference between the system with no 

automation and the system with automation; the second addresses the difference between 

each of the stages of automation; and the third addresses the difference between each of 

the levels of automation.  The six hypotheses are as follows: 

1) All of the automated models will have statistically significant improved 

performance from the baseline. 

2) Each of the stages will have statistically different performance from one another. 

3) As the level of automation increases, the performance will also increase. 

4) All of the automated models will have statistically significant reduced workload 

from the baseline. 

5) Each of the stages will have statistically different operator workload from one 

another. 

6) As the level of automation increased, the workload will decrease. 

Methodology 

IMPRINT and DES 

A discrete event simulation (DES) model was constructed to represent an existing 

human subjects experiment.  This model was developed in the Improved Performance 

Research Integration Tool (IMPRINT), a DES environment specifically tailored to model 

human performance.  IMPRINT enables the quantitative modeling of operator workload 

through the incorporation of the Visual, Auditory, Cognitive, and Psychomotor (VACP) 
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scale.  The scale relies on multiple resource workload theory to quantitatively assign 

cognitive demand to different resource channels.  The demand on each resource channel 

is quantified on a scale from 0 to 7, with verbal descriptions assisting in assigning of 

quantitative values.  Overall workload can be calculated using simultaneous demand 

experienced by all task for all channels.  Once the baseline model was built and validated, 

alternative models were created.  These alternative models incorporated a combination of 

different stages and levels of automation.   

Data Collection for DES Model: Human Experiment 

The IMPRINT models used in this study were created using data gathered from a 

human subject experiment conducted by the 711th Human Performance Wing Human 

Universal Measurement and Assessment Network (HUMAN) Lab at Wright Patterson 

AFB, OH.  The baseline IMPRINT model represents the subject completion of an RPA 

surveillance task, described below.  The interfaces used to complete the task were a 

standard QWERTY keyboard, a right-handed mouse, a headset, and three computer 

monitor displays.  The experiment gathered key press data, subjective workload, and 

performance scores.  The behavior data gathered from the experiment were used to 

construct probability distributions which are incorporated into the DES model tasks.  

These probability distributions are sampled by the model to capture variability for the 

task times. The incorporation of the data permitted a faithful representation of 

distributions of task times for the human subjects in the model.  Further details regarding 

incorporated behavior data and model validation are described in the Data Gathered 

section and the Generating IMPRINT Workload and Performance Values section.  
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 Design of Human Subject Experiment 

 The goal of the surveillance task is to locate a high value target (HVT) walking 

around within a market as shown in Figure 4.  In the figure, the right side shows a fully 

zoomed out view of the market while the left side shows a median zoom level of the 

market place.  The HVT is carrying a rifle which differentiates it from other human 

figures in the environment which serve as distractors.  Some distractors carry a shovel or 

a pistol, while others are empty handed.  The operator can click anywhere on the screen 

to center the sensor on that position.  The mouse wheel allows the operator to zoom in or 

out, providing the operator the ability to identify the HVT or move around the market 

quickly.  When found, the operator presses the F key on the keyboard to begin following 

the HVT.   

 

 

Figure 4: Screenshot of market during Surveillance Task 

 

While the operator is completing the primary surveillance task, there is a 

secondary communication task that consists of answering a mathematics question.  The 

mathematics question simulates operator communications with other pilots or air traffic 
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controllers.  The mathematics question is relayed through the headset, and takes the form 

of a single-step addition, subtraction, multiplication, or division problem.  As an 

example, the operator may be asked to find how far a plane might travel given its speed 

of travel and a certain time period.  The operator answers the problem by pressing down 

the space bar, and saying the answer aloud into the microphone.  Both the surveillance 

task (primary task) and the communication task (secondary task) can be completed 

simultaneously. 

The primary and secondary tasks in the surveillance trial are completed four times 

over a period of 265 seconds.  Each HVT is present for 60 seconds before walking under 

a tent, with a new HVT appearing after the prior one has passed from view.  The first 

mathematics question is asked 40 seconds from the beginning of the trial and subsequent 

questions are asked every minute thereafter.  The operator has 30 seconds to answer the 

question, with a steady decrease in performance score as the time to answer approaches 

30 seconds.  The operator is unaware of the schedule of each trial and is told to continue 

searching for and tracking HVTs during the length of the trial.  Upon completion of each 

trial, the operator has 180 seconds to complete the NASA Task Load Index (NASA 

TLX), a subjective workload questionnaire for each trial (Hart & Staveland, 1988). 

The surveillance task consists of four different scenarios, intended to vary the 

difficulty of the primary task. The four scenarios implement two independent variables 

each with two levels, as shown below in Table 4. The first variable is the quantity of 

distractors in the market, either a high (48 distractors) or a low (12 distractors) distractor 

level.  The second variable is the quality of the camera feed, either a high quality or a low 

quality camera feed.  The high quality camera feed shows a clear view of the market.  
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The low quality camera feed shows a view of the market with visual static noise imposed 

over it.  These two variables combine to create a total of four different scenarios.  Each 

participant completes each scenario 4 times, in a randomized order, for a total of 16 trials. 

 

Table 4: Experimental Design Matrix 

 

Low Distractors High Distractors 

High Camera Quality Scenario 1 Scenario 2 

Low Camera Quality Scenario 3 Scenario 4 

 
Data Gathered  

Three different types of data--key press data, subjective performance data, and 

subjective workload data--were gathered from the study.  The key press data consists of 

each time the F-key was pressed and each time the space bar was pressed.  There was a 

timestamp associated with each of the key presses.  The F-key was pressed by the subject 

every time a HVT was believed to be found.  The space bar was pressed by the subject 

every time the subject answered one of the mathematics questions.  Together with the 

performance data, these two pieces of data give insight into when the subject completed 

each task. 

 The performance data consists of data gathered during each second of the trial, 

with three points possible per second.  The subject could receive a total of 800 points for 

the primary task and 200 points for the secondary task for a combined total of 1000 

points.  If the target was on the screen after the F-key was pressed, points were added to 

the overall score.  The amount of points added to the score depended on the zoom level.  
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If the target was off of the screen, no points were given.  Because the target was 

continuously moving, the operator would need to re-center the screen often to keep the 

target on screen.  For the mathematics question, the operator would lose 5 points if the 

answer provided was wrong, would gain up to 50 points (depending on the length of time 

spent to answer the question), and would gain 0 points if no answer was provided. 

 The subjective workload data consists of a NASA-TLX survey at the end of each 

trial.  The NASA-TLX provides scales for six different dimensions of subjective 

workload: mental demand, physical demand, temporal demand, performance, effort, and 

frustration.  Five of these are rated on a scale from low to high, and performance is rated 

on a scale from good to poor.  The subjects were instructed to rate their perception on 

each scale during each trial.  The subjective workload data is used to validate the VACP 

workload scores. 

Experimental Design for the DES Automation Experiment 

The information provided from the human experiment was used to create the 

baseline DES model for the surveillance task and any subsequent alternative model.  In 

order to determine effect of implementing automation within the surveillance task, certain 

combinations of stages and levels of automation were chosen to be modeled in 

IMPRINT.  Out of the forty possible combinations available to be tested (4 stages x 10 

levels of automation), twelve combinations were chosen, and are described in the 

Automation Models section below.   

The two independent variables are the stages of automation and the LOAs.  The 

12 selected values of these factors were deliberately chosen to capture the full range of 

values to ensuring substantial differences in the implementation of the automation while 
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minimizing the number of treatment combinations.  The levels of automation that were 

selected are levels three, five, seven, and ten, Note that level one represents the baseline 

scenario. The types of automation chosen are information acquisition (information 

acquisition stage or Stage A), decision and action selection (decision stage or Stage C), 

and action implementation (action stage or Stage D).  The analysis stage (Stage B) was 

omitted from the study because at the current level of detail, this stage is combined with 

the decision stage and cannot be effectively separated. 

The dependent variables are the performance and workload of the operator during 

the task.  The performance is measured out of 1000 points, following the standard set in 

the “human-in-the-loop” experiment, with the performance averaging out to 340 points 

for the primary performance and 179 points for the communication performance, for a 

combined average of 519 points in the baseline model.  The workload of the operator is 

determined using the VACP scores gathered from each model, producing a time-

weighted average of 14.78 in the baseline model.  The communication score is not 

included in the analysis because the secondary task is unaffected by the automation 

implementations. 

Out of the four scenarios of the experiment, the scenario with a high amount of 

distractors and low camera quality was selected, thus it represented a case that is likely to 

benefit from automation.  Scenario 4 was modeled in IMPRINT by conducting a detailed 

task analysis to determine the lowest level tasks, process flows, and decision points.  

Figure 5 provides the IMPRINT task network of the baseline model.   
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Figure 5: IMPRINT Task Network of Scenario 4 

 

 After the baseline was created, tasks were added to represent new automation 

tasks and new interaction between the human and automation.  Table 5 details how the 

automation was represented using the different stages and levels of automation.  The 

bolded words in the table represent the distinct actions that make each of the levels and 

stages different from each other.  More information on the description of each automation 

combination can be found in Appendix A. 
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Table 5: Description of each automation combination 

  
Levels 

  
Three Five Seven Ten 

Stages 

Information 
Acquisition 

Automation suggests 
three different search 
patterns for the human 
to select.  This is 
represented in the model 
by displaying different 
search pattern 
suggestions using a pop-
up window. 

Automation selects an 
alternative search 
patternand requests 
confirmation from the 
human to use the search 
pattern.  The human 
approves or denys the 
search pattern.  If denied, 
the process is repeated. 

Automation selects 
and approves an 
alternative search 
pattern and informs 
human of search 
pattern chosen.  It is 
represented by 
displaying the chosen 
search pattern in a 
pop-up window. 

Automation choses 
an alternative.  The 
automation 
completes the 
task by executing 
the search pattern 
immediately (no 
window). 

Decision and 
Action 

Selection 

Automation suggests 
HVT by highlighting 
every person in the 
virtual environment with 
a green color.  All 
potential targets are 
highlighted in a red color 
(only in sufficient zoom 
level).  The human 
selects a HVT, and the 
other highlights are 
removed. 

When the HVT is on the 
screen, automation 
selects and highlights the 
HVT with a green color 
(only in sufficient zoom 
level).  The automation 
requests confirmation via 
pop-up window.  The 
human approves the 
request and the highlight 
turns from green to red. 

When the HVT is on 
the screen, 
automation selects 
and approves the 
HVT with a red color 
and informs human 
of the HVT selection 
via pop-up window.  
The human then 
follows the target. 

When the HVT is 
on the screen, 
automation 
completes the 
task by 
highlighting the 
HVT in red (no 
window).  Human 
then follows red 
HVT. 

Action 
Implementation 

Once HVT is located by 
human, automation 
suggests that the target 
be clicked via pop-up 
window.  The human 
selects the HVT, and 
then the automation takes 
over control of the 
camera and follows the 
HVT. 

Once HVT is located by 
human, automation 
selects and highlights a 
specific target on the 
screen and requests 
confirmation via pop-up 
window.  The human 
approves or denys the 
target.  If denied, process 
is repeated. 

Once HVT is located 
by human, 
automation selects 
and approves a 
specific target and 
informs human that 
the target will be 
followed via a pop-up 
window.  The 
automation then 
follows the HVT. 

Once HVT is 
located by human, 
automation 
completes the 
task by 
highlighting and 
following the 
target (no 
window). 

 

Generating IMPRINT Workload and Performance Values 

 Each model within IMPRINT was set to the same starting number in a random 

number seed (RNS), originally chosen to be 11, and ran to replicate each trial 300 times.  

As a result, each of the thirteen models generated an output of 300 total performance 

values, corresponding to 1200 HVT appearances as 4 HVTs appeared during each trial.  

Because IMPRINT only records workload values for the first replicate, a macro was 
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applied to run 47 additional replications in which the RNS was incremented from 11-58 

and the resulting 48 average workload values were recorded. 

 As the same RNS were used to initiate each of the models, the data from each of 

the models was paired, permitting a paired t-test to be applied to compare the baseline 

model to the alternative models. 

Automation Assumptions 

It is assumed that each of the distributions applied in the model are an accurate 

representation of the participant pool.  It is also assumed that each automation 

implementation is accurately represented in the automated models.  The primary action 

(searching and following the target) and the secondary action (answering a mathematics 

question) are completed in parallel, assuming that the subjects focused on both of these 

actions at the same time.  The communication score is not included in the analysis 

because the secondary task is unaffected by the automation implementations. The system 

tasks added in to the automated models are assumed to take no amount of time while the 

human tasks added into the automated models are assumed to follow micromodels in 

IMPRINT.  The micromodels used for each task can be found in Appendix A along with 

the descriptions of the respective automation implementations. A full list of the 

assumptions listed by model task node can be found in Appendix B. 

Model Validation 

To validate the IMPRINT baseline model, performance data and VACP values for 

workload were gathered as outputs from the model.  Performance values were compared 

between the subject performance scores and the model scores for Scenario 4 using a t-test 

with an alpha of 0.05.  The p-value for the t-test was 0.323, thus concluding that there is 
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no statistically significant difference between the model scores and the experiment 

scores, which is the desired result for satisfactory validation.  Figure 6 and Figure 7 show 

the distributions of the primary performance scores. 

 

Figure 6: Histogram of the baseline model performance 

 

 

Figure 7: Histogram of the experiment performance 
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NASA-TLX values were gathered from the human subject experiment, so a 

comparison was necessary to use the VACP values that IMPRINT works with.  Because 

NASA-TLX and VACP use different scales, t-tests are not feasible for validation of the 

model VACP values.  Instead, an Analysis of Variance (ANOVA) was used to validate 

the workload scores between the NASA-TLX and VACP values.  All four scenarios were 

used to identify any relationship between the scenarios.  If there was a relationship 

between the scenarios for the human experiment, then the models would be expected to 

reflect a similar relationship.  For example, in the top ANOVA, Scenarios 1 and 3 show 

very little difference.  The bottom ANOVA should then reflect that same relationship, 

also showing little difference between Scenarios 1 and 2.  For the VACP value, a time-

weighted average was computed to provide a single value for each of the trials.  Figure 8 

illustrates a One-way ANOVA between the NASA-TLX score and the Scenario and 

between the VACP Time Persistent Average and the Scenario. 
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Figure 8: ANOVA of VACP and TLX Score vs the Scenario 

 
As shown, both the VACP score and the NASA TLX score follow the same 

pattern showing that Scenarios 1 and 3 are lower in workload while Scenarios 2 and 4 are 

higher in workload with little difference between Scenarios 1 and 3 and between 

Scenarios 2 and 4.  While the pattern indicates the same tendencies, none of the 

differences in the NASA-TLX are statistically significant, due to the large variability 

between subjects in reporting NASA-TLX scores. 
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Results and Discussion 

Hypothesis 1: All of the automated models will have statistically significant 

improved performance from the baseline. 

The first hypothesis stated that all of the automation models would have 

statistically significant improved performance values over the baseline system.  This 

hypothesis was partially supported because nine of the twelve models had statistically 

significant improved performance, shown in Table 6. 

 

Table 6: T-Test Performance Difference in Means (100% Reliability–Baseline) 

  Level 3 Level 5 Level 7 Level 10 
Information Acquisition Stage (A) 72.9** 59.32** 70.9** 65.5** 
Decision Stage (C) 90.8** 221.67** 222.59** 231.75** 
Response Stage (D) 7.99 9.3 11.9 24.39* 

Legend: **p-value<=0.01;  *p<=0.05;  Grayed out=not significant 

 

Three of the four performance values in the response stage were not statistically 

different from Baseline.  Therefore, it would appear that in the current scenario 

automation implemented in the action implementation stage has little effect upon 

performance.  This is an unexpected result because it shows how little the automation 

increased system performance in the stage where automation is traditionally 

implemented.  Thus, the operator performed the action of following the target relatively 

well. In this instance of automation, the automation did not aid in the process of finding 

the target.  Because the human still had to find the target manually, there was no change 

to that portion of the task.  Once found, the automation would take over and while it 
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never lost the target, the human lost the target infrequently in manual mode (baseline 

scenario) so there were very little performance points to be gained by automating this 

stage of the task. 

The four performance values in the information acquisition stage were higher than 

the Baseline, providing a statistically significant difference between all of the information 

acquisition stage models and the Baseline.  This was an expected result.  Since the 

automation is helping the operator find the target by taking control of the camera 

movement and implementing search patterns, the operator should find the target in less 

time, resulting in a better score. 

The four performance values in the decision stage were higher than the Baseline, 

providing a statistically significant difference between all of the decision stage models 

and the Baseline.  This was also an expected result, but surprisingly the result is much 

higher than automation in the information acquisition stage, with the exception of Level 3 

Decision Stage.  The models predict that the three higher level decision stages will 

experience a 65 percent increase in performance over the baseline, higher than the 20 

percent increase of the highest-scoring information acqisition stage.  The higher LOA 

three Decision Stage models have significantly higher performance than any other 

automation implementation. 

Hypothesis 2: Each of the stages will have statistically different performance 

from one another. 

The second hypothesis stated that each of the stages will have statistically 

different performance from one another.  This hypothesis was supported, with statistical 

differences between each of the stages, shown in Figure 9.  Note that Level 3 Decision 
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Stage is very similar to a few of the information acquisition stage models.  Illustrated in 

Figure 10 is a Tukey Test confirming the same hypothesis that the stages are different 

from each other, as none of the intervals in any of the tests contain 0.   

 

 
 

Figure 9: ANOVA of Performance Scores vs Automation Implementation  
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Figure 10: Tukey Tests Comparing Stages (Performance) 

Hypothesis 3: As the level of automation increases, the performance will also 

increase. 

The third hypothesis stated that the performance would increased as the level of 

automation increased.  The analysis partially supports this hypothesis, with 3 of the 6 

comparisons finding differences between levels and 1 of the 6 finding marginal 

difference as shown in Figure 11. 
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Figure 11: Tukey Tests comparing Levels (Performance) 

 

This result stands out because of the impact the different levels made within a 

particular stage of automation.  The levels were hypothesized to provide as much change 

to the model as the stages did, but some comparisons show no difference, as opposed to 

the stages which showed significance in all of the comparisons.  The only level that was 

statistically different from all of the others was Level 3.  Level 3 did not contain 0 within 

the interval, thus showing statistical difference between Level 3 and the other three 

levels.  Level 10 also statisitcally differs from both Level 3 and Level 5.  Thus the Levels 
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on the extremes (3 and 10) produce more differences than those in the middle (Level 5 

and 7). 

Performance Results Discussion 

Given that the reputation of automation assisting an operator with an RPA task is 

favorable, the results produced by the response stage are surprising. Automation is 

generally believed to help accomplish a task better and faster, so no change in the 

performance is unexpected.  However, given the specific automation implementation 

used, little change in the performance is understandable.  The specific action performed 

by the automation in the action stage is an action widely used by current RPA systems.  

The automation becomes much more beneficial when used over a period of hours 

because humans are worse at monitoring a video feed than the automation over extended 

durations.  The human study may not have subjected the operators to trials long enough 

for this automation advanatage to have been fully realized. 

The information acquisition stage results are more consistent with the belief that 

automation is useful.  They provide moderate improvement to a task that the operator was 

performing, adding a beneficial increase in performance. 

The decision stage also represents automation that is not used frequently in an 

RPA system.  Much of the choice is left up to the operators when categorizing individuals 

who have appeared on a video feed.  Designers may struggle with a proper solution that 

can differentiate between people and choose one that fits a certain description, but if it 

were possible to build such automation, it may provide considerable benefit to the 

operators. 



51 

Hypothesis 4: All of the automated models will have statistically significant 

reduced workload from the baseline. 

The fourth hypothesis stated that all of the automated models would have 

workload changes that were statistically lower than the baseline.  This hypothesis was 

supported by the difference in means paired t-tests shown in Table 7.  The information 

acquisition and decision stage models were significant, but magnitude of the change was 

largely irrelevant compared to the response stage.   When incorporating automation into 

the RPA task, one of the goals was to reduce the operator workload.  Illustrated in Table 

7 are the workload results comparing the baseline model with no automation to the 

twelve automation models.  There are a few unexpected results with regards to the 

workload. 

Table 7: T-Test Workload Difference in Means (Automation–Baseline) 

  Level 3 Level 5 Level 7 Level 10 
Information Acquisition Stage (A) -0.1859** -0.1980** -0.1709** -0.1642** 
Decision Stage (C) -0.1367** -0.6256** -0.6740** -0.3832** 
Response Stage (D) -2.951** -2.380** -2.476** -2.494** 

Legend: **p-value<=0.01;  *p<=0.05; 

 

 The response stage has the most noticable workload reduction.  Every level in the 

response stage had a greatly reduced workload when compared to the baseline and even 

the rest of the automated models.  Table 7 shows how great the difference becomes, with 

greater than a 2 point reduction in workload.  The mean time-weighted average workload 

for the baseline model is 14.78, thus the increase shown by each response stage model is 

approximately a 15% or greater increase over the baseline model.  This reduction is three 
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times as much as any of the other automated models with the next largest reduction, at 

Level 7 Decision Stage, reporting a 5% increase over the baseline.  The reason for this 

stems from the action being completed by the automation.  In the response stage, the 

automation completes the task of following the target, reducing the operator’s task to a 

monitoring task, which requires much less workload than the act of continuously 

recentering the camera video feed. 

 Automating the information acquisition stage does not produce a large change in 

workload.  This is a surprising result considering that this automation also removes the 

action of recentering the screen.  Although the t-test results show that the information 

acquisition stage models are all significant when compared to the baseline, they still 

represent the smallest workload change from the baseline out of all of the models. 

 Automating the decision stage consisted of a moderate change in workload, 

generally a greater reduction than the information acquisition stage, but less of a change 

than the response stage.  This is not too surprising, given how the automation was 

implemented for the decision stage.  The operator continued most of the tasks similar to 

the baseline, but the automation would attempt to locate the target along with the 

operator.  The automation may have allowed for speed of identification, but the 

responsiblity of identification was still held by the operator, thus workload was 

minimally affected by the automation. 

Hypothesis 5: Each of the stages will have statistically different operator 

workload from one another. 

The fifth hypothesis stated that each of the stages would have statistically 

different operator workload from one another.  This hypothesis is supported and 
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illustrated in the ANOVA provided in Figure 12 and the corresponding Tukey Tests 

provided in Figure 13, where the four response stage models can be seen on the left side 

of the graph and the other models can be seen on the right side of the graph in the 

ANOVA.  The Tukey Tests show how the information acquisiton stage and the decision 

stage are similar, but still significant because the intervals do not contain the value 0. 

 

 

Figure 12: ANOVA of Baseline Workload Scores vs Automation 
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Figure 13: Tukey Tests comparing Stages (Workload) 

 With two stages so close together, the designer should consider the small change 

in workload when deciding between the information acquisition stage and the decision 

stage; however the response stage has significantly reduced workload when compared to 

either of the two stages or the baseline and should first be considered for feasibility 

before the other two stages. 

Hypothesis 6: As the level of automation increases, the workload will decrease. 

The sixth hypothesis stated that as the levels of automation increased, the 

workload would decrease.  This hypothesis was not supported by the analysis, as both 

Figure 14 and Table 7 show that the levels had a very small impact, if any, on the 

difference in workload. 
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Figure 14: Tukey Tests comparing Levels (Workload) 

Workload Results Discussion 

The response stage automation is a type of automation that is currently being used 

in a variety of RPAs, albeit in a different context.  Most of the monitoring that an 

operator completes is related to the flight of the aircraft.  Designers have become adept at 

incorporating automation designed to fly the RPA and while this does reduce the 

workload substantially, designers need to be careful not to underload the operator.  In a 

situation where the operator does not have any tasks to complete, situation awareness 

drops and boredom can set in. 
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The information acquisition is a stage of automation that may not currently be 

used frequently when incorporating automation into RPAs.  However, this result 

indicates that system desginers may not want to focus on automating any sensor 

movement, as the operators performed similarly to the automation when in charge of the 

sensors.  Also, the sensor portion of the task is not what makes up most of the workload 

during that time.  Most of the workload is due to the operator performing the visual 

search task in an attempt to find the HVT.  So even when the automation is able to 

remove a portion of the workload, that portion was not large enough to result in a 

substantial decrease in workload. 

The models in the decision stage are an example of automation that increases the 

performance dramatically while leaving the workload relatively unchanged.  The 

significance between the baseline model and the automated models still indicates 

statistical significance, but the magnitude of the change is relatively limited when 

compared to results from the response stage.  This type of automation would be very 

helpful to desingers that felt the operator workload level was comfortable, but wanted to 

increase the performance of the system.  Designers also need to keep in mind the 

nonlinear relationship between workload and performance when making automation 

design decisions. 

Conclusions 

This paper shows how workload and performance can be affected by different 

implementations of automation.  Stages and levels of automation were used to create 

different combinations of automation, which were then incorporated into an RPA task.  
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The levels within a stage produced slight variation with regards to the primary task 

performance, but different stages affected the performance to a greater extent.  The 

information acquisition stage provided a moderate increase in the performance, the 

decision stage provided a large increase in the performance, and the response stage 

provided no discernable increase in performance.  The performance did not change as a 

result of decreased operator workload or increased performance in the primary task.  

Automation reduced the operator workload for all of the automated models.  The 

information acquisition stage and decision stage models saw a small decrease in 

workload.  The response stage provided a large decrease in comparison to the other 

automated models.  The change in workload due to changes in levels of the automation 

was indiscernable. 

The largest increase in performance occurred for all of the decision stage models 

because the automation was reducing the time it took to find the target.  Based off of the 

results, the actual decision making took the longest time for the human to complete, 

leaving a large amount of time for the automation to reduce, adding many points to the 

performance score.  With regards to the workload, the response stage models greatly 

reduced the amount of workload that the operator experienced.  The automation allowed 

the cognitive workload of the operator to reduce from a following task to a simpler 

monitoring task.  A reduction in workload may be small, but the small decrease grows as 

the time following the target increases.  Automation can be invaluable when attempting 

to assist the operator or the system.  However, in order to obtain the best results from the 

automation implementation, system designers will need to understand how different 

implementations may affect the system. 
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Future Work 

Future work in this area includes further examination  of the relationship between 

the stages and levels to discern which combinations work together optimally. Performing 

this same investigation with other systems will aid in discovering if the preferred stage-

level combination differs from system to system or is common across systems. If some 

combinations work better than others in all systems, this would greatly aid in reducing 

the design trade-space. 

 While these results provide an insight into using different automation for RPA 

operations, future research should focus on implementing these stages and levels 

combinations of automation into a human subject study.  Some effects may not be 

noticed in DES that a human study may uncover. 

 When making automation implementation tradeoffs, other factors, such as 

reliablity may also impact operator workload and system performance. Future work 

should seek to identify these factors and examine their impacts with on workload and 

performance with regards to the different combinations of stages and levels of 

automation.  If one combination has less sensitivity than another, it may be prudent to 

choose the less sensitive combination 
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IV.  The Impact of Reliability on the Performance and Operator Workload Within a 

System 

Abstract 

This paper investigates how automation reliability may affect the workload and 

performance of the operator as well as how the impact of reliability is affected by the 

different automation implementations.  This study uses IMPRINT discrete event 

simulation to evaluate three levels of reliability in twelve different baseline automation 

implementations. The automation implementations incorporate different instances of 

automation into a remotely piloted vehicle task by varying the stage and level of 

automation.  The reliability is assessed at 100%, 80%, 70%, and 60%.  The results 

indicate that the performance values between 100% reliability and reduced reliability are 

generally significantly reduced with the exception of the response stage models.  The 

results for the workload values indicate very little change between 100% reliability and 

the reduced reliability.    The performance between the baseline models and the reduced 

reliability models experiences some significant changes while the workload between the 

baseline models and the reduced reliability models is insensitive to change. 

Introduction 

Understanding Reliability 

As defined by Parasuraman et al., automation “refers to the full or partial 

replacement of a function previously carried out by the human operator” (Parasuraman, 

Sheridan, & Wickens, 2000).  Incorporating automation into industrialized systems 

brought with it new changes to the way systems were designed.  By adding automation, 
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systems became more complex and more robust, creating a paradox in which the more 

complex the system is, the more crucial a human will be to keeping the system running 

properly (Bainbridge, 1983).  A complex system can also be helpful for completing 

difficult tasks but incorporating automation can be difficult due to the complexity.  A 

complex system has a higher potential for error because of how many more areas a 

problem can arise from.  More parts mean more places the system can fail. 

The goal of incorporating automation in a system is to minimize errors (usually 

attributed to the human), but not every error-causing situation can be foreseen by the 

designer.  The more errors within the automation, the worse the automation will perform.  

At some reliability level, the automation will begin to start degrading the performance of 

the system.  The point at which the degradation begins differs based on the automation 

implementation chosen.  Some implementations may have less sensitivity to reliability, 

allowing those implementations to outperform the others.  This research aims to aid 

system designers in choosing the most effective automation implementation given the 

degraded reliability. 

Reliability and RPAs 

Reliability of a system becomes extremely important if there is minimal human 

contact to intervene in the systems operations.  Space missions where a probe was sent 

out into the solar system to collect data on another planet required parts to be far more 

reliable than a machine in a production line with a human standing next to it to make sure 

the job gets done properly.  Frequently, when automation fails, human intervention is 

necessary (Bainbridge, 1983).  If no human can reach the system, then the failure may 

never be fixed.  In the case of remotely piloted aircraft (RPA), a machine that is flying 
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without a human in the cockpit, the direct human contact will be minimal compared with 

manned systems.  RPAs have human pilots flying the aircraft but if a failure occurs, the 

geographically separated operator may be unable to recover the aircraft before it crashes.  

Any RPA conducting reconnaissance may contain sensitive information about the enemy.  

Because of the cost implications associated with RPA crashes, reliability of the parts and 

reliability of the automation continues to receive attention (Dixon, Wickens, & Chang, 

2005). 

 As the complexity increases in a system, the automation may need to accept more 

tasks to keep the human from becoming overworked.  As the automation receives more 

tasks from the human, the human must be aware of possible errors and ways to fix them.  

If the automation is unable to execute the tasks properly, then the human may be required 

to intervene in order to correct the automation.  In some instances of faulty automation, 

the overall system performance may be better off without the automation.  Gauging the 

point at which the automation becomes harmful may be difficult without any previous 

data gathered about the automation to know when or how it fails.   

Research Goals 

 This paper investigates the relationship between the automation and its reliability 

in terms of how those factors affect operator workload and system performance.  In 

addition to examining reliability, this study also examines the interaction between 

reliability and different types of automation implementation.  The study uses discrete-

event simulation (DES) to model a human subject experiment for RPA operations.  The 

DES model of the baseline systems is expanded to incorporate 12 different automation 

implementations.  Each implementation is then examined on three levels of reliability in 
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order to determine how automation failures impact operator workload and the overall 

system performance.   

Background 

RPAs and Workload 

Current RPA missions rely upon multiple operators to control a single aircraft.  In 

a time where the military is reducing the workforce, the number of operators needs to be 

reduced.  One of the limiting factors on the operator is the amount of cognitive workload 

that can be handled at one time.  Reducing that workload requires automation.  

Automation supports the operator by assuming control of some of the tasks, reducing the 

stress on the operator workload.  However, much of the automation incorporated 

currently is not perfect.  There is a potential that for a portion of time, the automation will 

act sub-optimally, causing a decrease in the mission performance that otherwise would 

not have occurred had the third operator remained.  The likelihood of sub-par mission 

performance can be reduced with better information about how automation should be 

implemented into the system and information about any secondary effects that are not 

immediately visible to the designer. 

Automation 

 Automation is contained within many of the tasks we perform in a day.  Daily 

tasks on a computer use automation constantly so the human does not have to become 

overburdened with simple tasks.  In that sense, the human is able to focus on the pressing 

issues that are more worthwhile.  However, automation may not always support the 

operator.  If the automation fails or the automation cannot communicate properly with the 
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operator, the automation may prevent the operator from effectively accomplishing the 

task.  Any harmful interference from the automation could add to operator workload 

rather than reduce it. 

In addition to potentially making the task more difficult for the operator, 

automation may create new actions for the operator to complete.  In most cases, these 

actions do not require as much cognitive workload as the task the automation is 

performing, but typically the automation does not completely remove a task from the task 

load of the operator.  For example, most automated tasks require some form of interaction 

between the automation and the operator.  If the automation provides notifications about 

a system failure, the human must still react to that notification.  The human does not 

completely shed the task, but requires less workload than when working with a system 

with no automation.  The automation is still considered to be effective because it reduced 

the overall workload on the operator.  In cases where the operator is overloaded and 

performance is degraded, adding automation can reduce the risk of potential failures. 

Automation provides some unique advantages and disadvantages.  One advantage 

is a general reduction in human error.  By moving human interaction with the system into 

a monitoring position, the human participation in the task is reduced (Swanson, et al., 

2012).  With the human slightly removed from the task, the accompanying human error is 

normally lessened.  Also, when the automation is incorporated correctly, the overall task 

load of the operator will be reduced.  By reducing the human’s task load, the human 

operator is able to focus on other tasks that may improve overall system performance. 

One of the disadvantages of automation is that reducing human participation will 

likely result in reduced operator situation awareness.  If automation takes over key 
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processes and the human lacks the appropriate situation awareness, then the human may 

be unable to effectively resolve automation failures.  Furthermore, reduced interaction 

with the system can lead to a degradation of operator’s skillsets.  Conversely, more 

interaction with the task increases the operator’s skill level and better prepares them to 

make decisions in unexpected situations.   

Automation can also potentially cause an increase in workload because of the 

added communication between the system and the operator.  Examples of this additional 

communication include: asking the operator to choose the task to complete, asking for 

permission to begin the task, informing the operator that it is beginning a new task, 

asking the operator to select between multiple courses of action, and notifying the 

operator of task status/completion. 

As mentioned above, a reduction in human error is expected when automation is 

implemented.  Clumsy implementation of automation may, however, lead to an increase 

in human error (Woods, Johannesen, Cook, & Sarter, 1994).  New burdens may be 

unintentionally placed on the operator, creating more problems and more opportunities 

for error, along with the expected benefits provided by the automation (Woods, 

Johannesen, Cook, & Sarter, 1994).  For example, if automation is only built to 

accommodate routine scenarios, then latent problems may arise when a scenario appears 

that was not covered.  These latent problems could then emerge when the human works 

through the scenario (Woods, Johannesen, Cook, & Sarter, 1994).  That scenario may 

never occur, but the possibility of it happening leads to an added possibility of human 

error due to the clumsy implementation of automation. 
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Stages and Levels of Automation 

As automation replaces tasks performed by the human operator, replacement may 

include tasks related to any of the four stages of human information processing: Sensory 

Processing, Perception/Working Memory, Decision Making, and Response Selection.  

Sensory Processing gathers information from the outside world and provides it for higher 

level processing.  Perception/Working Memory synthesizes this information with 

remembered information to form an interpretation of the environment.  Decision Making 

relies upon the interpretation of the environment to decide upon a course of action.  

Response Selection completes the action decided upon in the Decision Making stage.  

When automated, the replacement technologies are referred to as Information 

Acquisition, Information Analysis, Decision and Action Selection and Action 

Implementation, respectively.  The corresponding stages for machine information 

processing are shown in Figure 15 (Parasuraman, Sheridan, & Wickens, 2000). 

 

 

Figure 15: Stages of machine processing built from the human information 

processing model – adapted from (Parasuraman, Sheridan, & Wickens, 2000) 
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The replacement technology can automate each of the four stages of information 

processing to one of ten levels of automation, as proposed by Sheridan and Verplank 

(1978).  These ten levels of automation (LOAs) are provided in Table 8.  Combined, the 

stages and levels form forty combinations of automation that are unique from each other.  

For example, an Information Acquisition stage coupled with level three will produce 

automation that gives several different choices on how information should be obtained.  

If the level was changed from three to five, then the automation may only ask the human 

if the choice chosen by the automation should be used or not.  Conversely, if the stage 

was changed from Information Acquisition to Decision and Action Selection but 

remained at level three, then the automation may ask the operator to choose from a set of 

actions to complete.  The combination of stages and levels of automation provides 

numerous design options for implementing automation into a system. 

Table 8: Levels of Automation – adapted from (Sheridan & Verplank, 1978) 
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Reliability 

Reliability is also partly a function of system complexity.  As systems become 

more complex, the automation becomes more complex as well, leaving greater 

opportunities for unforeseen problems that could lead to a system failure.  This results in 

the “irony of automation” where, as the complexity of a system rises, human involvement 

becomes more critical due to all of the unforeseen problems (Bainbridge, 1983). 

Recent reliability studies in the RPA field focus on the reliance and compliance of 

human dependence (Wickens & Dixon, 2006).  Reliance is the state of human 

dependence when the automation is quiet.  Compliance is the state of human dependence 

when the automation is alerting the human that something has potentially gone wrong.  

Human reliance stays high when the automation has fewer misses, meaning that the 

human has more trust that the system is fine when the automation is quiet.  Human 

compliance stays high when the automation produces fewer false alarms, meaning that 

the human has more trust in the automation to correctly identify when something has 

gone wrong.  When both metrics are high, the human experiences less cognitive 

workload because the human believes that the automation is handling the task well.  Both 

of these metrics are based on human perception, so there is potential for a disconnect 

between actual automation performance and perceived automation performance.  A study 

performed by Dixon and Wickens (2006) illustrates the reliance and compliance of the 

human and how those two metrics may affect the reaction time of the human to any 

automation signals.  Dixon and Wickens found that when the automation produced more 

misses, the operator was quicker to notice them and fix them, but had trouble completing 

the concurrent tasks in a timely manner (less reliance).  When the automation produced 
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more false alarms, the operator had a slower and less accurate response (less compliance) 

to the alarm but showed little change in the ability to complete the concurrent tasks.  

Reliance and compliance are important attributes for alarm-style automation 

systems; however, these attributes may be less relevant for other types of automation 

implementation.  For example, with RPA operations, the automation may help track a 

target.  This example does not fit in neatly with reliance and compliance which are geared 

towards alerts and alarms, thus reliance and compliance may be less helpful in 

determining the reliability of the automation.  Another way to look at reliability is the 

percentage of time that the automation does not fail, represented as a number from 0-

100% (Parasuraman, Molloy, & Singh, 1993).  A failure can represent any type of action 

taken by the automation that the operator did not expect or any type of halt in the 

automation sequence, where it cannot manage to complete assigned activities.  Previous 

automation studies have attempted to identify the point at which automation failure 

makes the system performance decrease and operator workload increase above the 

baseline of not having any automation at all.  One study has placed this number at 

approximately 70-75% reliability (Wickens & Dixon, 2006).  Thus, if the automation 

fails more than 25-30% of the time, then the operator would have performed better 

without the automation.  However, the task being completed also has an impact on the 

effectiveness of the automation as the reliability is reduced.  John and Manes found that 

even automation reliabilities below 70% still may be helpful (John & Manes, 2002).  In 

their study, the goal of the operator was to locate a target while the automation would 

provide suggestions on places to look.  As the reliability was reduced below 70%, the 

automation was still helpful in aiding the operator.  Thus, the reliability threshold for 
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which it begins to harm the workload and performance of the operator may depend on the 

task being completed.  Perhaps metrics including task completion times for the human 

and the automation, recovery time necessary in the event of a reliability failure, and 

operator workload could be useful in further understanding this tradeoff.  System 

designers need to know at what threshold the automation reliability should stay above in 

order to help, rather than hinder, task performance. 

Discrete Event Simulation and IMPRINT 

In order to capture the reliability of the automation, this study uses discrete event 

simulation (DES) to model the workload and performance of an operator completing a 

common RPA task.  Simulations provide several advantages over human experiments 

including a decrease in the amount of time to run trials, less outside factors to influence 

the subjects (i.e. recent family death, loss of job), and the ability to evaluate multiple 

manipulations of the system.  A sample amount of information is necessary to build a 

simulation, but given that information, many different types of manipulations can then be 

accomplished.  The simulation is constructed using the Improved Performance Research 

Integration Tool (IMPRINT), a DES environment specifically tailored to model human 

performance (Alion Science and Technology, 2009).  IMPRINT enables the quantitative 

modeling of operator workload through incorporation of the Visual, Auditory, Cognitive, 

and Psychomotor (VACP) scale.  VACP draws on the multiple resource workload theory 

to quantitatively assign demand to resource channels using verbal descriptions of 

categories of tasks.  There are seven channels within the VACP model: the visual, 

auditory, cognitive, fine motor, gross motor, tactile, and speech.  As a task is completed, 

the operator experiences varying levels of workload in each of these channels which 
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combine to form a single unique value for overall workload.  Originally developed for 

US Army acquisitions, IMPRINT can be used to assist in the research of human 

performance (Alion Science and Technology, 2009). 

Purpose  

This paper demonstrates the impact of reliability levels on operator workload and 

system performance.  This research extends previous reliability studies by examining 

automation reliability across the spectrum of automation stages and levels.  Identifying 

the interactions between reliability and automation implementation will enable system 

designers to make more effective tradeoffs when incorporating automation.  

 To evaluate the impact of reliability and automation implementations, this 

research identifies and answers eight hypotheses.  The eight hypotheses can be broken 

down into two sets of four.  The first set consists of four hypotheses that are related to the 

system performance and the second set consists of four hypotheses that are related to the 

operator workload.  Both sets assess the same independent variables, with the first 

hypothesis addressing the difference between the lower reliability models and the 

baseline model with no automation, the second hypothesis addressing the difference 

between the different reduced reliability models and their respective 100% reliability 

model, the third hypothesis addressing the difference between the automation stages at 

each reliability measure, and the fourth hypothesis addressing the difference between the 

automation levels at each reliability measure.  All eight hypotheses are as follows: 

Set 1 (System Performance Hypotheses) 

1) All of the models at 60% reliability will have significantly reduced 

performance when compared to the baseline with no automation. 
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2) All of the models at 80%, 70%, and 60% will have significantly reduced 

performance when compared to their respective 100% model. 

3) The performance differences between stages will be significantly affected 

by changes in the reliability measures. 

4)  The performance differences between levels will be significantly affected 

by changes in the reliability measures. 

Set 2 (Operator Workload Hypotheses) 

5) All of the models at 60% reliability and above will have significantly 

reduced workload when compared to the baseline with no automation. 

6) All of the models at 80%, 70%, and 60% will have significantly increased 

workload when compared to their respective 100% model. 

7) The workload differences between stages will be significantly affected by 

changes in the reliability measures. 

8) The workload differences between levels will be significantly affected by 

changes in the reliability measures. 

Methodology 

Human RPA Experiment 

The RPA task consists of a surveillance operation where the goal is to locate a 

high value target (HVT) within a marketplace, shown in Figure 16.  Once the operator 

had located the HVT, designated by a rifle held in both hands, the operator would notify 

the system that the HVT was found, and would then track the HVT until the HVT left the 

screen. Each trial consisted of following 4 HVTs, all of which appeared sequentially, so 
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only one HVT was visible at a time. The operator had the task of controlling the sensor 

feed in order to find the HVT.  Performance points were awarded for tracking the HVT 

upon acknowledgement that the target had been found.  

 

 

Figure 16: Screenshot of market in Surveillance Task 

  

In addition to the primary task, the operator also had to complete a secondary 

communication task designed to represent communication with other pilots or air traffic 

controllers.  The communication task consisted of a mathematics question related to the 

RPA’s altitude or airspeed, which was provided both over audibly over a headset and in 

text for on the right-most screen, as shown in Figure 17. 
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Figure 17: Complete setup of displays in human experiment 

 

The surveillance task consisted of four different scenarios intended to vary the 

difficulty of the primary task.  The four scenarios combined two independent variables, 

the amount of distractors (high or low) and the camera quality (high or low).  For 

evaluating reliability and automation implementation, this research focuses on the most 

difficult scenario with high distractors and low camera quality because this scenario is the 

most suitable candidate for incorporating automation. 

Baseline Model 

This paper builds upon previous work from Chapter III. Modeling the Effects of 

Stages and Levels of Automation on Operator Workload and System Performance in 

RPA Operations.  The previous work developed a baseline simulation in IMPRINT that 

modeled the performance and workload of a human operator conducting an RPA 

surveillance task.  This simulation model used performance and behavior data from a 

human-in-the-loop study conducted by the 711th Human Performance Wing at Wright 

Patterson AFB, OH to determine the task network, decision logic, and probabilistic task 

times.  See Methodology in Chapter III for a detailed description of the baseline model. 

From this baseline model, twelve automation combinations out of the possible forty (4 

stages x 10 levels of automation) were modeled to evaluate how different automation 
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implementations impacts operator workload and system performance (see Experimental 

Design for DES Automation Experiment).   

Model Validation 

To validate the IMPRINT baseline model built from the human experiment, 

performance data and VACP values for workload were gathered as outputs from the 

model.  Performance values were compared between the subject performance scores and 

the model scores for Scenario 4 using a t-test with an alpha of 0.05.  The p-value for the 

t-test was 0.32, thus finding no statistical difference between the model scores and the 

experiment scores.  An Analysis of Variance (ANOVA) was used in order to validate the 

workload scores.  To compare the NASA-TLX and VACP values, a time-weighted 

average was found for the VACP values.  The single value of the VACP average and 

NASA-TLX was then compared across all of the trials and was found to have no 

statistical significance.  For more information on the model validation, refer to Model 

Validation in Chapter III. 

Generating IMPRINT Workload and Performance Values 

 Each model within IMPRINT was set to the same starting number in a random 

number seed (RNS), originally chosen to be 11, and ran to replicate each trial 300 times.  

As a result, each of the thirteen models generated an output of 300 total performance 

values, corresponding to 1200 HVT appearances as 4 HVTs appeared during each trial.  

Because IMPRINT only records workload values for the first replicate, a macro was 

applied to run 47 additional replications in which the RNS was incremented from 11-58 

and the resulting 48 average workload values were recorded. 
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 As the same RNS were used to initiate each of the models, the data from each of 

the models was paired, permitting a paired t-test to be applied to compare the baseline 

model to the alternative models. 

Automation Assumptions 

It is assumed that each of the distributions applied in the model are an accurate 

representation of the participant pool.  It is also assumed that each automation 

implementation is accurately represented in the automated models.  The primary action 

(searching and following the target) and the secondary action (answering a mathematics 

question) are completed in parallel, assuming that the subjects focused on both of these 

actions at the same time.  With regards to the communication task, it is assumed that the 

automation implementations will have no effect on the secondary task, so the secondary 

communication task is not included in the analysis. The system tasks added in to the 

automated models are assumed to take no amount of time while the human tasks added 

into the automated models are assumed to follow micromodels in IMPRINT. The 

micromodels used for each task can be found in Appendix A along with the descriptions 

of the respective automation implementations.  A full list of the assumptions listed by 

model task node can be found in Appendix B. 

Reliability Assumptions 

 It is assumed that the automated models are a valid representation of the 

automation actions portrayed.  In addition, it is assumed that the reliability failure 

occurring in each of the models can be immediately reset by the operator.  Upon reset, the 

reliability will once again have a chance of failure.  The human is also assumed to have 

no loss in faith when the automation fails, so no matter how many times the automation 
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fails the human will continue to operate the same way.  With respect to failures, the 

human is memoryless.  It is also assumed that any failure in automation will not disrupt 

any other portion of the system besides the current portion the automation is working 

within.  A deeper look into the assumptions with regards to the reliability can be found in 

Appendix B. 

Experimental Design for DES Automation Experiment 

After baseline model creation and validation, twelve alternative models were 

created to model the implementation of automation.  Out of the forty possible 

combinations (4 stages x 10 levels of automation), the twelve combinations selected 

enable a significant reduction in the number of alternatives to analyze while still spanning 

the entire design space  for the automation. The three selected stages are: Information 

Acquisition (Stage A or information acquisition stage), Decision and Action Selection 

(Stage C or decision stage), and Action Implementation (Stage D or response stage).  Out 

of the four stages, the information analysis stage (Stage B), was not chosen because the 

information analysis stage was very similar to the information acquisition stage for the 

RPA task.  Any changes that affected the acquisition stage would also affect the 

information analysis stage.  The four levels are levels three, five, seven, and ten.  Note 

that Level 1 automation represents the original baseline model.  Each of the automation 

actions was applied to the baseline automation.  Table 9 provides descriptions of the 

different levels and stages that were used in each of the twelve models.  
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Table 9: Descriptions of Automation Actions 
 

  
Levels 

  
Three Five Seven Ten 

Stages 

Information 
Acquisition 

Automation suggests 
three different search 
patterns for the human 
to select.  This is 
represented in the model 
by displaying different 
search pattern 
suggestions using a pop-
up window. 

Automation selects an 
alternative search 
patternand requests 
confirmation from the 
human to use the search 
pattern.  The human 
approves or denys the 
search pattern.  If denied, 
the process is repeated. 

Automation selects 
and approves an 
alternative search 
pattern and informs 
human of search 
pattern chosen.  It is 
represented by 
displaying the chosen 
search pattern in a 
pop-up window. 

Automation choses 
an alternative.  The 
automation 
completes the 
task by executing 
the search pattern 
immediately (no 
window). 

Decision and 
Action 

Selection 

Automation suggests 
HVT by highlighting 
every person in the 
virtual environment with 
a green color.  All 
potential targets are 
highlighted in a red color 
(only in sufficient zoom 
level).  The human 
selects a HVT, and the 
other highlights are 
removed. 

When the HVT is on the 
screen, automation 
selects and highlights the 
HVT with a green color 
(only in sufficient zoom 
level).  The automation 
requests confirmation via 
pop-up window.  The 
human approves the 
request and the highlight 
turns from green to red. 

When the HVT is on 
the screen, 
automation selects 
and approves the 
HVT with a red color 
and informs human 
of the HVT selection 
via pop-up window.  
The human then 
follows the target. 

When the HVT is 
on the screen, 
automation 
completes the 
task by 
highlighting the 
HVT in red (no 
window).  Human 
then follows red 
HVT. 

Action 
Implementation 

Once HVT is located by 
human, automation 
suggests that the target 
be clicked via pop-up 
window.  The human 
selects the HVT, and 
then the automation takes 
over control of the 
camera and follows the 
HVT. 

Once HVT is located by 
human, automation 
selects and highlights a 
specific target on the 
screen and requests 
confirmation via pop-up 
window.  The human 
approves or denys the 
target.  If denied, process 
is repeated. 

Once HVT is located 
by human, 
automation selects 
and approves a 
specific target and 
informs human that 
the target will be 
followed via a pop-up 
window.  The 
automation then 
follows the HVT. 

Once HVT is 
located by human, 
automation 
completes the 
task by 
highlighting and 
following the 
target (no 
window). 

 

First, each automation combination was run at 100% reliability.  Although it is 

helpful to understand how the automation changed the performance and the workload of 

each operator, the reliability of the automation will never be 100%.  Past research showed 

that automation that has failed 25-30% of the time (70-75% reliable) tends to degrade the 

task performance and raise the operator workload.  Because of this, a potential error was 

created for each of the twelve automation combinations to understand how a failure 
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might affect operator workload and system performance.  Table 10 provides a description 

of each of the failures. 
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Table 10: Description of Reliability Failures 

 
  Levels 

    Three Five Seven Ten 

Stages 

Information 
Acquisition 

Failure occurs when 
search pattern only 
covers a certain 
percentage of the 
market.  This is 
represented with the 
Automation Pass/Fail 
task.  The human may 
realize there is a problem 
and restart the 
automation.  In that case, 
automation suggests 
new search patterns and 
the human selects one of 
the suggestions. 

Failure occurs when 
search pattern only 
covers a certain 
percentage of the 
market.  This is 
represented with the 
Automation Pass/Fail 
task.  The human may 
realize there is a 
problem and restart the 
automation.  In that 
case, automation 
selects a new search 
pattern and the human 
approves the 
suggestion. 

Failure occurs when 
search pattern only 
covers a certain 
percentage of the 
market.  This is 
represented with the 
Automation Pass/Fail 
task.  The human may 
realize there is a problem 
and restart the 
automation.  In that case, 
the automation selects 
and approves a new 
pattern and the human is 
informed of the 
selection. 

Failure occurs when 
search pattern only 
covers a certain 
percentage of the 
market.  This is 
represented with the 
Automation Pass/Fail 
task.  The human may 
realize there is a 
problem and restart the 
automation.  The 
automation completes 
the task again to 
choose a new pattern. 

Decision and 
Action 

Selection 

Failure occurs when the 
automation does not 
highlight the potential 
HVTs or highlights a 
distractor.  The human 
may realize there is a 
problem and restart the 
automation.  In that case, 
the automation suggests 
new potential HVTs and 
the human selects one of 
the suggestions. 

Failure occurs when the 
automation does not 
highlight the potential 
HVT or highlights a 
distractor.  The human 
may realize there is a 
problem and restart the 
automation.  In that 
case, automation 
selects a new potential 
HVT and the human 
approves the 
suggestion. 

Failure occurs when the 
automation does not 
highlight the potential 
HVT or highlights a 
distractor.  The human 
may realize there is a 
problem and restart the 
automation.  In that case, 
the automation selects 
and approves a new 
HVT and the human is 
informed of the 
selection. 

Failure occurs when the 
automation does not 
highlight the potential 
HVT or highlights a 
distractor.  The human 
may realize there is a 
problem and restart the 
automation.  In that 
case, the automation 
completes the task 
again to choose a new 
HVT. 

Action 
Implementation 

Failure occurs when the 
automation begins to 
follow a distractor or 
nothing at all.  In that 
case, the human may 
skip the notification that 
a target was lost and 
restart the automation. 
The human must then 
relocate the target, at 
which point the 
automation suggests 
new HVTs to follow and 
human selects one of the 
suggestions. 

Failure occurs when the 
automation begins to 
follow a distractor or 
nothing at all.  In that 
case, the human may 
skip the notification that 
a target was lost and 
restart the automation. 
The human must then 
relocate the target, at 
which point the 
automation selects a 
new HVT to follow and 
human approves the 
suggestion. 

Failure occurs when the 
automation begins to 
follow a distractor or 
nothing at all.  In that 
case, the human may 
skip the notification that 
a target was lost and 
restart the automation. 
The human must then 
relocate the target, at 
which point the 
automation suggests 
and approves a new 
HVT to follow and the 
human is informed of 
the selection. 

Failure occurs when the 
automation begins to 
follow a distractor or 
nothing at all.  In that 
case, the human may 
skip the notification that 
a target was lost and 
restart the automation. 
The human must then 
relocate the target, at 
which point the 
automation completes 
the task again to 
follow a new HVT. 
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Independent and Dependent Variables 

This research evaluates two independent variables: automation implementation 

and degree of reliability.  Automation implementation consists of the 12 stage and level 

combinations: the Information Acquisition stage, the Decision and Action Selection 

stage, and the Action Implementation stage with level three, five, seven, and ten.  The 

degree of reliability altered the likelihood that an automation error would occur.  For 

example, if the likelihood was 80% reliability, then the automation error would only 

happen for 20% of the automated task occurrences.  Each automation implementation 

contains a task with a probability of failure and the probability is assessed each time the 

task is performed.  Depending on the outcome, the model will continue down either the 

success or failure path, reevaluating a failure every time the task is performed.  Note that 

because the task will repeat, there is potential for multiple failures to occur in a single 

task run.  The three degrees of reliability used in each of the combinations were 80%, 

70%, and 60%.  Thus, the experimental design consisted of 12x4 = 48 alternative designs 

(12 automation implementations, 4 degrees of reliability) to compare to the original 12 

baseline automation implementations at 100% reliability. 

There were two dependent variables within this DES.  The first one was the 

performance of the operator, and was based out of a total scored of 1000 points.  Every 

time the operator would designate that the target was found with the F key, the operator 

would start accumulating points at a rate of one point every third of a second.  That 

accounted for 800 of the total points.  The other 200 came from the mathematics 

question, where 50 points would be given for a right answer, -5 for a wrong answer, and 

0 for no answer.  The primary performance values in the baseline model averaged out to 
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340 points.  The second dependent variable was the workload of the operator which was 

the time-weighted average VACP values gathered from the IMPRINT models.  The 

VACP values were added up over the whole trial period and then divided by the amount 

of seconds within the trial to gather the time-weighted average.  The time-weighted 

workload values in the baseline model averaged out to a score of 14.78.  The 

communication score is not included in the analysis because the secondary task is 

unaffected by the automation implementations. 

Implementing Reliability into the Automation Implementation Models 

Each automation implementation model needed to be modified to account for the 

consequence of the potential failure caused by the degraded reliability.  For example, the 

automation action of the Level 5 Stage A model was to select a search pattern and request 

approval from the operator to use the selected pattern.  When the reliability was 100%, 

the automation performed as intended.  When the reliability was reduced to 70%, 

additional nodes were required to determine whether or not a failure occurred, and to 

capture the alternative tasks caused by the failure. In the case of 70% reliability, the 

automation would fail 30% of the time that the automated task occurred and when a 

failure occurred, only a portion of the market was searched. This partial search would be 

unsuccessful in finding the target, and the process would begin again with the selection of 

the search pattern after the partial search was conducted.  Figure 18 and Figure 19 show 

the model at 100% reliability and again at 70% reliability within IMPRINT. 
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Legend:  Purple – system task, Blue – task containing workload, Brown – task containing workload with no 

performance gain 

Figure 18: Level 5 Stage A (information acquisition stage) at 100% reliability 

 

Legend:  Purple – system task, Blue – task containing workload, Brown – task containing workload with no 

performance gain 

Figure 19: Level 5 Stage A (information acquisition stage) at 70% reliability 

 

Similar tasks were added to each of the twelve automation models to capture the 

probability and consequence of failure, resulting in forty-eight new models (4 levels of 

reliability for each of the 12). 

New Task Nodes 
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An Analysis of Variance (ANOVA) was used in order to evaluate the workload 

and performance of the models.  The ANOVA provided a 95% confidence interval of the 

performance and workload values for each of the models.  Coupled with that, a paired t-

test, with a significance level of 0.05, was used to evaluate the difference in means 

between the 100% reliability models and the degraded reliability models.   

Results and Discussion 

Hypothesis 1: All of the models at 60% reliability will have significantly reduced 

performance when compared to the baseline with no automation. 

The first hypothesis stated that all of the models at 60% reliability will have 

significantly reduced performance when compared to the baseline with no automation, 

shown in Table 11.  This hypothesis was partially supported by the results.  The negative 

values in the table represent instances where the model at 60% reliability performed 

worse than the baseline model while the positive values in the table represent the times 

where the 60% reliability instance performed better than the baseline model.   The 

response stage models only had three implementations that were significantly lower when 

compared to the baseline and the information acquisition stage models had one 

implementation that was significantly lower.  Thus, the performance in the information 

acquisition stage models at 60% reliability was very similar to performance with no 

automation at all.  All decision stage models show significantly improved performance, 

illustrating the improvement in system performance even with reduced reliability. 

 



84 

Table 11: T-Test Performance Difference in Means (60% Reliability–Baseline) 

  Level 3 Level 5 Level 7 Level 10 
Information Acquisition Stage (A) -18.5 -18.62* -1.3 6.4 
Decision Stage (C) 19.36* 131.6** 132.96** 165.63** 
Response Stage (D) -34.12** -21.1* -18.43* 11.23 

Legend: *p-value<=0.05 **p<=0.01 Grayed out=not significant  

 

 This result is unexpected given the information from the past studies.  As one 

study pointed out, once automation degrades below 70-75% reliability, the system 

performs worse with automation than with no automation at all.  This result illustrates 

that the degrading of the reliability may be dependent upon the stage of automation. 

Hypothesis 2: All of the models at 80%, 70%, and 60% will have significantly 

reduced performance when compared to their respective 100% model. 

The second hypothesis stated that all of the models at 80%, 70%, and 60% would 

have significantly reduced performance when compared to their respective 100% 

reliability models, shown in Table 12.  This hypothesis was largely supported, with only 

four implementations producing values that are not deemed significant.  Table 12 shows 

the results of the paired t-tests for the performance scores between the baseline reliability 

of 100% and the other reliabilities of 80%, 70%, and 60% for each automation 

combination. The table values provide the difference in means for the corresponding 

paired t-test.  To obtain the difference in means, the lower reliability performance score 

was subtracted from the baseline of 100%.  Therefore, a negative value indicates that the 

model with the lower reliability had the lower performance score as well.  A positive 

value indicated that the lower reliability had a higher performance score.  To determine 
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whether the p-value was statistically significant, an alpha of 0.05 was used; asterisks are 

used in the table to capture the level of significance.  Most of the models resulted in 

significantly lower performance even at the higher 80% reliability model, showing how 

volatile the performance scores are when reliability changes. 

 

Table 12: T-Test Performance Difference in Means (X Reliability–100% Reliability) 

X = 80% Reliability 
  Level 3 Level 5 Level 7 Level 10 
Information Acquisition Stage -54.1**  -25.1*  -35.1**  -32.3**  
Decision Stage -46.1**  -62.9**  -59.3**  -40.3**  
Response Stage -19.3*  2 0.9 -24.0*  

X = 70% Reliability 
  Level 3 Level 5 Level 7 Level 10 
Information Acquisition Stage -70.8**  -56.6**  -59.8**  -49.8**  
Decision Stage -59.3**  -82.3**  -81.0**  -54.2**  
Response Stage -29.2**  -5.4 -8 -31.6**  

X = 60% Reliability 
  Level 3 Level 5 Level 7 Level 10 
Information Acquisition Stage -106.2**  -95.2**  -88.6**  -74.8**  
Decision Stage -86.5**  -104.9**  -104.5**  -90.0**  
Response Stage -41.0**  -16.4*  -19.1**  -28.0**  

 
Legend: *p-value<=0.05 **p<=0.01 Grayed out=not significant 

 

 Levels 5 and 7 of the response stage show significance only when comparing 

100% reliability to 60% reliability.  A high increase in performance due to the benefits of 

perfect automation would be expected to result in a high decrease in performance as the 

automation reliability decreases, but Levels 3 and 5 of the response stage show resistance 

to change. 
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Hypothesis 3: The performance differences between stages will be significantly 

affected by changes in the reliability measures. 

The third hypothesis stated the performance differences between stages will be 

significantly affected by changes in the reliability measures.  This hypothesis was 

supported and illustrated in Figure 20.  The interaction p-value is below 0.05, meaning 

there is a significant interaction between the stage factor and the reliability factor.  This 

means that the difference in performance between stages changes as the reliability 

changes.  The two factors influence each other so that the amount of change in 

performance values from one stage to another depends upon the reliability measure.   

 

 
Figure 20: 2-Way ANOVA comparing Performance Values of Different Stages and 

Reliabilities 

Hypothesis 4: The performance differences between levels will be significantly 

affected by changes in the reliability measures. 

The fourth hypothesis stated that the performance differences between levels will 

be significantly affected by changes in the reliability measures.  This hypothesis was not 

supported, and can be seen in Figure 21.  The interaction p-value is 0.84, which is much 

higher than the significance threshold of 0.05, thus the level of reliability does not impact 
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the difference caused by as change in level.  This means that there is very little, if any, 

interaction between the reliability measures and the levels of automation, so a change in 

one of the factors will consistently result in the same change across the instances of the 

other factor. 

 

 
Figure 21: 2-Way ANOVA comparing Performance Values of Different Levels and 

Reliabilities 

Performance Results Discussion 

 As expected and shown in Table 13, decreased reliability produced lower 

performance scores, as can be seen with all of the statistically significant differences in 

means reporting a negative score.  For 80% and 70% reliability in Level 5 Action 

Implementation stage (response stage) and Level 7 Action Implementation stage, the 

numbers are not statistically significant.  In other words, these combinations for each of 

the three reduced reliabilities produced performance scores that were not statistically 

different from the baseline of 100% reliability.  Furthermore, 60% reliability for Level 5 

and 7 with the response stage represented the smallest difference in means for each of 

their respective levels.  For every level of automation, regardless of how badly the 

automation performed, the change in reliability had the least effect on the response stage.  
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This could be for a number of reasons, but one of the more probable ones is that at the 

response stage, the automation is only performing the function of following the target.  

The automation in the response stage has no effect on how quickly the HVT can be 

found, so the performance score is not affected by the automation during what is believed 

to be the major contribution to the performance.  System designers, if designing a system 

with automation to increase the performance, may want to identify stages that affect the 

system performance and incorporate automation into those stages. 

It can be noted that Level 5 Decision Stage contains all of the highest difference 

in means besides Level 3 Information Acquisition Stage at 60% reliability.  These 

differences are a reduction of about one quarter of the entire primary task score from 

100% reliability to 60% reliability.  These differences generated p-values below 0.05, 

thus they are statistically significant.  In other words, all of the performance scores differ 

greatly between Level 5 Decision Stage with 100% reliability and Level 5 Decision Stage 

with less-than-100% reliability.  In this case, every drop in reliability results in a 

performance drop.  Although Level 3 Information Acquisition Stage had the highest 

difference in means as a single model with regards to performance, all twelve decision 

stage models regardless of the level and reliability had high differences.  These 

differences illustrate how much of an effect there was because of the change in reliability.  

In general, the decision stage requires a lot of time to complete.  In other systems, most of 

the time may be spent in other stages such as the response stage, but when a system 

requires the operator to continually make small decisions, the decision stage becomes one 

of the primary stages that the operator spends most of the time. 
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In addition, the interaction between the performance values of the reliability 

measures and the stages and levels produced some interesting results.  The interaction 

between the reliability and the stages resulted in significance, meaning that a change in 

instance of one of the factors will affect the differences between the levels of the other 

factor.  For example, the performance values of the decision stage and the response stage 

may grow closer or further apart as they change with reliability changes.  The interaction 

between the reliability and the levels produced insignificant results, thus a change in one 

of the factors does not affect differences between levels of the other factor. 

Hypothesis 5: All of the models at 60% reliability and above will have 

significantly reduced workload when compared to the baseline with no 

automation 

 The fifth hypothesis stated that all of the models at 60% reliability and above will 

have significantly reduced workload when compared to the baseline with no automation.  

This hypothesis was largely supported, as nine of the twelve models showed significance 

when compared to the baseline shown in Table 13.  Also to note, all four of the response 

stage models continued to show significantly reduced workload at a low reliability level.  

This illustrates that even as the reliability starts to decrease, the workload is generally 

significantly lower when the automation is incorporated than not. 
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Table 13: T-Test Performance Difference in Means (60% Reliability–Baseline) 

  Level 3 Level 5 Level 7 Level 10 
Information Acquisition Stage (A) -0.0425 -.1625** -.1218** -.0240 
Decision Stage (C) -.0338 -.3637* -.4169** -1.165** 
Response Stage (D) -2.536** -2.237** -2.201** -2.318** 

Legend: *p-value<=0.05 **p<=0.01 Grayed out=not significant  

 

Hypothesis 6: All of the models at 80%, 70%, and 60% will have significantly 

increased workload when compared to their respective 100% model. 

The sixth hypothesis stated that all of the models at 80%, 70%, and 60% 

reliability will have an increased workload when compared to their respective 100% 

reliability models.  This hypothesis was partially supported, showing significance in 

about half of the models and no significance in the other half, shown in Table 14.  Within 

the table, all of the values represent the workload value at 100% reliability subtracted 

from the workload value at the reduced reliability.  Any value that is positive shows an 

increased workload as reliability is reduced while any value that is negative shows a 

decreased workload as reliability is reduced.  Also to note, the models at 80% reliability 

show significance in half of the models, illustrating how even a smaller reduction in 

reliability can significantly affect the workload of the operator. 

 



91 

Table 14: T-Test Workload Difference in Means (X Reliability–100% Reliability) 

X = 80% Reliability 
  Level 3 Level 5 Level 7 Level 10 
Information Acquisition Stage .1055* 0.0046 0.0153 .0880* 
Decision Stage 0.0464 .2175** .2033** -0.2544** 
Response Stage .255*  -0.01 0.089 0.047 

X = 70% Reliability 
  Level 3 Level 5 Level 7 Level 10 
Information Acquisition Stage 0.124** 0.027 0.009 0.104* 
Decision Stage 0.053 0.542** 0.24** -0.379** 
Response Stage 0.252 0.129 0.272* 0.039 

X = 60% Reliability 
  Level 3 Level 5 Level 7 Level 10 
Information Acquisition Stage 0.143** 0.036 0.049 0.14** 
Decision Stage 0.103** 0.262** 0.257** -0.781** 
Response Stage 0.415* 0.143 0.276 0.176 

 
Legend: *p-value<=0.05 **p<=0.01 Grayed out=no significance 

 

 Ten of the twelve decision stage models show significance, so reliability seems to 

have an effect on workload; however some implementations show increasing workload as 

the reliability decreases and some implementation show decreasing workload as the 

reliability decreases.  This result is unexpected, but considering how much workload can 

be devoted to a decision, greater workload changes may occur.  Designers may want to 

keep in mind the fact that the operator workload in the decision stage is reliant upon the 

reliability of the automation. 
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Hypothesis 7: The workload differences between stages will be significantly 

affected by changes in the reliability measures. 

The seventh hypothesis stated that the workload differences between stages will 

be significantly affected by changes in the reliability measures.  This hypothesis was not 

supported, shown in Figure 22.  The interaction p-value is 0.086, which is above the 

threshold of 0.05, thus failing to reject the null hypothesis of no interaction.  This means 

that as one of the factors changes, the other factor will change the same across all of the 

levels of that factor: when comparing the change due to reliability of two different stages, 

the change will be consistent across the levels.  This result was unexpected, as the 

interaction between the stages and reliability measures when comparing performance 

values was significant. 

 

 
Figure 22: 2-Way ANOVA comparing Workload Values of Different Stages and 

Reliabilities 

Hypothesis 8: The workload differences between levels will be significantly 

affected by changes in the reliability measures. 

The eighth hypothesis stated that the workload differences between levels will be 

significantly affected by changes in the reliability measures.  The findings do not support 
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this hypothesis, with Figure 23 showing how automation levels within the same stage 

continued to change at similar rates as reliability changed.  This result is illustrated 

through the interaction p-value, which produced a value of 0.795, much higher than the 

threshold for significance of 0.05.  This result implies that changing the automation levels 

does not have much of an effect on the differences between the reliability measures, and 

vice versa.   

 

 

Figure 23: 2-Way ANOVA comparing Workload Values of Different Levels and 

Reliabilities 

Workload Results Discussion 

Table 14 shows the results of the paired t-tests for the workload values between 

the baseline reliability of 100% and the other reliabilities of 80%, 70%, and 60% for each 

automation combination. The table values provide a difference in means between 100% 

reliability and either 80%, 70%, or 60% reliability for each automation combination.  To 

determine whether the p-value was statistically significant, an alpha of 0.05 was used; 

asterisks are used in the table to capture the level of significance.  

One of the few takeaways from this table is that the values in the decision stage 

levels are mostly significant.  Excepting Level 3 Decision Stage at 80% and 70% 
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reliability, every other decision stage had a high statistical significance.  That significance 

illustrates how the workload differed between the baseline reliability and the two 

alternative reliabilities.  This could be attributed to how much the action in the decision 

stage influenced the overall performance and workload.  Most of the workload and 

performance changes that the operator experienced were attributed to deciding upon an 

HVT, so the automation should have the largest effect when taking on that role. 

 Another unexpected result can be seen when looking at all of the response stage 

levels in Table 14.  Six of the eight differences between means are not statistically 

significant when using an alpha of 0.05.  In other words, there is a low likelihood that 

there is a difference between the workload of the operator when automation is following 

the target with 100% reliability and 80%, 70%, or 60% reliability.  Even if the reliability 

drops to levels below the threshold that the automation is helping, the operator does not 

see any significant workload change.  This is important because it shows how little of an 

effect the reliability has on the task.  If a designer chooses to implement automation for a 

similar task, then the designer may not want to spend the extra money to bring the 

reliability above 90% if it does not provide any benefits for the operator. 

 Just like the performance, these results indicate how much of an impact the 

reliability of the automation had on the operator workload.  As Table 14 illustrates, the 

automation implementation has a large effect on the workload.  Much of the significance 

is dependent upon the stage and level of automation.  From 70% to 60% reliability, three 

of the twelve models experienced a change from significance to non-significance or vice 

versa.  While some change occurred based on the reliability, most of the change seemed 

focused around the automation that was used.  This research did assume that the 
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operators would act in the same manner regardless if the automation was 100% or 60%, 

so some of the results may change if operator reaction is involved.  Judging by the 

results, if designers decide to incorporate automation into some of the key decision 

making tasks, precautions need to be taken in order to improve the reliability and keep 

the operator workload reduced. 

One more observation focuses on the values in Table 13.  This table illustrates the 

differences between the 60% reliability models and the baseline models with no 

automation.  Most of the values in the table are still significantly negative, suggesting that 

even when the reliability of the automation drops to 60%, the operator still feels less 

workload than when the system is using no automation.  The three models that are not 

significant are Level 3 Decision Stage and Levels 3 and 10 Information Acquisition 

Stage.  This table illustrates how helpful automation may be, even with a reduction in 

reliability.  This result largely contradicts previous research suggesting that automation 

should only be used when reliability is above 70-75% reliable.  

Finally, the last two hypotheses produced unexpected results, showing no 

significance for the interaction between the stages of automation and the reliability 

measures and no significance for the interaction between the levels of automation and the 

reliability measures.  These results mean that when the reliability is reduced from 70% to 

60%, the difference between workload values within a level 3 model and level 10 model 

of the same stage are the same.  These results are unexpected because higher automation 

levels would expect to see larger differences between the workload values as reliability is 

reduced. 
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Conclusion 

Key Findings 

These results indicate how important the automation implementation and the 

reliability are to the success of the system.  The different types of implementation affect 

both the performance and the workload of the operator, some implementations more than 

others.  Not a single stage and level was superior in every way, so designers will need to 

consider different choices depending on their needs.  If a system is performing well but 

the operator is consistently overworked, then automation may need some type of 

monitoring task to reduce that workload.  If both the system is performing poorly and the 

operator is overworked, then it may be possible that more than one implementation is 

necessary.  As automation becomes more necessary to use for more complex systems, 

designers will need to understand what the operator needs and how the automation 

interacts with the operator. 

 Furthermore, based off of the results from the performance scores and the 

workload values, the area where the automation brought about the most change was 

during the actual decision selection.  When the automation took over much of the 

decision making process, the human had the greatest reduction in workload and the 

largest change in performance.  Based off of these results, if the designer was to 

implement automation, a stage that may result in improved performance and reduced 

workload is during the decision selection phase.   

Following the same idea, the designer must have a high reliability for the 

automation when the automation performs well, or the high gains will be reduced by high 

losses.  This can also hold true for any system.  If the designer is able to locate the action 
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that presents the greatest effect on the system, or change in the system, then the designer 

can automate that action and, if done well, can greatly increase the output of the system.   

This study finds that automation reliability affects performance and workload 

differently, with reliability affecting performance but not workload for certain automation 

implementations, and vice versa.  For example if the designer is looking to improve the 

system performance with automation, then tasks that aid decision making may benefit 

from automation.  If the designer is looking to reduce the amount of workload that the 

operator experiences, then the system may benefit from automation incorporated at any 

task that falls under the action implementation stage of the processing model.  

Future Work 

Future work in automation reliability could focus more on how trust plays a part 

in how the human accepts the automation.  The work presented shows automation 

reliability as if an operator continued acting in the same manner even when the reliability 

drops.  Trust is a large part of how well the operator and automation function together 

because if the operator has no trust in the automation, then the operator can never 

completely hand over the task to the automation.  This work illustrates some of the 

benefits when the operator can completely transfer the task to the automation even in the 

light of failing automation, but does not take into account how the operator may want to 

take over for the automation at some point.  

 Another interesting portion of work that was not addressed in this research 

focuses on how different implementations may complement one another.  If automation 

was incorporated in multiple stages, the question becomes whether the stages support 

each other or not.  For example, if some automation in the decision stage was 
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implemented and then automation from the response stage followed up on the task the 

decision stage completed, the handoff of information may be smooth or some information 

may get lost.  Incorporating multiple automation implementations over two or more 

stages may produce some interesting results.  On top of that question, the levels can also 

play a factor in how much information the automation shares with the operator.  Too 

much automation at a level 10 (fully automatic) may leave the operator with a loss in 

situation awareness.  Unforeseen problems need to be addressed before a system becomes 

operational or the system will not perform to its fullest potential. 

 Lastly, the results from this reliability and implementation research can be tested 

again by human subjects.  Because of the differences between DES models and human 

subjects, using these same automation implementations and reliability measures will 

expand the knowledge on the reliability and implementation of the automation upon the 

operator workload and system performance.  DES provides a way to quickly run trials 

and remove some of the variance in human subjects while human subjects can provide 

real-world data that DES assumed away.  Both methods provide unique benefits that, 

when used together, will make the end results more robust.  
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter begins by providing a broad overview of the current situation for 

remotely piloted aircraft (RPA) in the military.  It then restates the research objective 

posed at the beginning of this paper.  The research objective is followed by the two 

investigative questions and a discussion of their subsequent answers.  The chapter then 

ends with recommendations for future work to extend this research. 

Research Motivation 

Current trends point towards a steady, increasing growth of the use of RPAs, even 

in the commercial sector.  Recently, Amazon stated in a letter to the Federal Aviation 

Administration (FAA) that they would like to use RPAs as a way to transport packages in 

a more timely fashion (Misener, 2014).  Within the military, leaders continue to advocate 

for RPAs, citing the dull, dirty, and dangerous jobs for which RPAs are so well-suited 

(Van Cleave, 2003).  In order to realize the military’s future vision, some of the 

fundamental ways that RPA missions are conducted need to change.  Rather than having 

a one-to-one ratio of human to RPA at best, automation could allow for a single human to 

control multiple RPAs if designed correctly.  With RPAs working as a force multiplier, 

the military would then be one step closer to reducing manpower while simultaneously 

increasing effectiveness.  This research investigated ways to incorporate increased 

automation into the RPA system to reduce the workload associated with managing a 

single RPA.  With reduced workload, future operators may be able to control multiple 

RPAs without becoming overloaded. 
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Research Objective 

The increasing complexity of systems has initiated a need for automation to 

compliment human efforts to complete the task at hand.  Tasks have become more 

involved due to the desire for increased operator output, thus automation is needed to 

remove some of the actions from the human when the workload is too high.  This 

research aimed to provide insight to system designers regarding the impact of automation 

implementation design decisions.  A discrete event simulation (DES) was used to 

simulate operators in a high workload environment in order to determine effective ways 

to implement automation.  The Improved Performance Research Integration Tool 

(IMPRINT) DES software was used to provide workload and performance data based off 

of the data gathered from a human experiment completed by the 711th Human 

Performance Wing. 

 The experiment centered on humans interfacing with a virtual environment 

representation of an RPA system.  The goal of the study was to locate a HVT within a 

marketplace.  The performance data was based on how long it took the operator to find 

the target and how well the operator could follow it, while subjective workload data was 

based on a NASA-TLX questionnaire that the operator completed at the end of each trial.  

The information gathered was used to build DES models within IMPRINT, which could 

be modified to change or add tasks, based on the automation portrayed.  In IMPRINT, 

performance was measured in total points awarded using the same mechanism as was 

done in the human experiment, while workload was measured with VACP values. 
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Investigative Question One  

Two areas are important to investigating design tradeoffs for automation 

implementation: the stage and level of automation and the reliability of the automation.  

The first area can be addressed by revisiting the first investigative question identified in 

Chapter 1: 

1. What stages and levels of automation reduce operator workload and increase 

performance in the surveillance task? 

The automation was incorporated into the model as a specific action based off of 

different stages and levels of automation.  The different stages and levels of automation 

combine to form forty automation implementation combinations.  Twelve of these 

combinations were chosen to be simulated and evaluated.  They were deliberately chosen 

to capture the full range of values to ensuring substantial differences in the 

implementation of the automation, while also minimizing the number of treatment 

combinations to be investigated.  The stages chosen include the information acquisition 

stage (acquisition stage or Stage A), the decision and action selection stage (decision 

stage or Stage C), and the action implementation stage (response stage or Stage D).  The 

levels chosen were levels 3, 5, 7, and 10.  Each stage represented a different part of the 

process that was automated, while the levels represented the amount of automation 

incorporated.  Out of the four stages, the information analysis stage (Stage B), was not 

chosen because the information analysis stage was very similar to the information 

acquisition stage for the RPA task.  Any changes that affected the acquisition stage would 

also affect the information analysis stage. 
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The purpose of creating these twelve models was to develop an understanding of 

how the baseline performance and workload might compare to the different automated 

models.  The first three hypotheses evaluated the performance dependent variable; 

hypotheses four through six evaluated the operator workload dependent variable. Each set 

of three assesses the same independent variables, first addressing the difference between 

the system with no automation and the system with automation, second addressing the 

difference between each of the stages of automation, and third addressing the difference 

between each of the levels of automation.   

Performance of Stage and Level Models 

The first hypothesis states that all of the automated models would have 

statistically significant improved performance from the baseline.  Four of the models 

showed no improved performance but eight of the twelve models had statistically 

significant improved performance.  None of the response stage models were significant.  

This is an unexpected result, but can be explained due to how little the automation 

affected the performance of the task.  The automation did not help the operator find the 

target, so the time to find the target was relatively the same.  The automation followed the 

target well, but because the operator rarely lost the target, the performance benefit from 

the automation was minimized. 

The second hypothesis states that each of the stages will have statistically 

different performance from one another.  This hypothesis was supported, with statistical 

differences between each of the stages.  All of the decision stage models experienced a 

large performance increase, the information acquisition stage models experienced a 

moderate increase, and all of the response stage models experienced a minimal increase 
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over the baseline system.  This result illustrates the diverse reaction to the different stages 

of automation.  System designers need to be aware that the stage of automation 

implementation can have significant impact on system performance outcomes.  

 The third hypothesis states that the performance increases as the level of 

automation increases.  The analysis did not support this hypothesis and instead, the levels 

within stages changed very little.  This result was unexpected, as increasing the amount 

of automation for a task is believed to increase the performance as well.  System 

designers should keep in mind that keeping the operator engaged in the task is expected 

to increase the operator situational awareness. 

Workload of Stage and Level Models 

The fourth hypothesis states that all of the automated models would have 

workload changes that are significantly reduced below the baseline.  This hypothesis was 

supported for every model.  While some of the stages may not have reduced the workload 

by large magnitudes of time-averaged VACP values, those small differences can amount 

to a large reduction in workload when taken over a longer period of time. 

 The fifth hypothesis states that each of the stages will have statistically different 

operator workload from one another.  This hypothesis was supported by the results.  The 

response stage models had much lower workload than the rest of the models, even though 

the response stage did not experince substantial increases in performance. The other two 

stages were closer, but still showed significance between the two stages.  This 

demonstrates that gains in performance and workload are not directly connected, and 

systems designs need to evaluated for both.  In an environment where operator workload 
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is more of a concern than system performance in any system, automation implementation 

in the response stage could be very useful. 

 The sixth hypothesis states that as the levels of automation increases, the 

workload would decrease.  This hypothesis was not supported by the data, with 

differences between levels not producing differences in workload.  This result was 

unexpected because reducing the amount of tasks allocated to the operator would be 

expected to reduce the amount of workload the operator experiences. 

Investigative Question Two 

The second area that is important to developing automation in RPAs is the 

reliability.  The reliability can be addressed by revisiting the second investigative 

question identified in Chapter 1: 

2. How does the level of reliability of the automation affect the workload and 

performance of the user during the task? 

After the twelve models were built to model the different automation 

implementations, each implementation was modified to incorporate three different levels 

of reliability.  The levels were chosen based on previous findings, suggesting that around 

70-75% reliability is the point at which the automation harms the operator workload and 

performance of the system.  In order to capture possible patterns outside what was 

expected, 80% and 60% were included with 70% to create three different levels of 

reliability.  The twelve models from the first investigative question became the baseline 

models for this portion of the study, representing the automation performing at 100% 

reliability with no errors.  The three reliability models were compared to the respective 
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baseline model that contained the same stage and level of automation to interpret impacts 

of reliability on workload and performance.  The purpose of using the automation models 

as baseline models and comparing them to models with reduced reliability is to determine 

how much of an effect the reliability has on the system.  A total of eight hypotheses were 

made to predict the effect of reduced reliability.  The eight hypotheses can be divided into 

two sets of four.  The first set consisted of four hypotheses that evaluated the system 

performance dependent variable and the second set consisted of four hypotheses that 

evaluated the operator workload dependent variable.  Both sets assess the same 

independent variables, with the first hypothesis addressing the difference between the 

lower reliability models and the baseline model with no automation, the second 

hypothesis addressing the difference between the different reduced reliability models and 

their respective 100% model, the third hypothesis addressing the difference between the 

automation stages at each reliability measure, and the fourth hypothesis addressing the 

difference between the automation levels at each reliability measure. 

Performance of Reliability  

The first hypothesis states that all of the models at 60% reliability will have 

significantly reduced performance when compared to the baseline with no automation.  

The information acquisition models did not support this hypothesis, only containing one 

data point that was significant when compared to the baseline while the decision and 

response models were generally significant.  The results show that the information 

acquisition models were very similar to the performance with no automation at all, the 

decision stage models still had significantly better performance values even at 60% 



106 

reliability, and the response stage models had significantly worse performance than the 

baseline. 

 The second hypothesis states that all of the models at 80%, 70%, and 60% would 

have significantly reduced performance when compared to their respective 100% 

reliability models.  This hypothesis was largely supported, with only four models 

producing values that could not be deemed significant (Levels 5 and 7 in the response 

stage in both the 70% and 80% reliability measures).  This result illustrates the effect that 

the reliability has on the performance of the system and should be taken into 

consideration by system designers when trying to incorporate automation. 

 The third hypothesis states that the performance differences between stages will 

be significantly affected by changes in the reliability measures.  This hypothesis was 

largely supported, with the interaction between the stages and reliability measures 

showing significance.  This means that as reliability changes, the difference between 

stages of the same level significantly change.  This result shows how reliability can affect 

the performance values of each stage differently. 

 The fourth hypothesis states that the performance differences between levels will 

be significantly affected by changes in the reliability measures.  This hypothesis was not 

supported, producing a p-value interaction of 0.84, much higher than 0.05.  This result 

was unexpected because changing reliability measures was expected to change higher 

level automation more than lower level automation.  Instead, the reliability affected both 

higher and lower level automation in the same manner. 
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Workload of Reliability 

The fifth hypothesis stated that all of the models at 60% reliability will have 

significantly higher workload when compared to the baseline with no automation.  This 

hypothesis was largely supported, as every level in the response stage showed 

significance when compared to the baseline and only three of the twelve did not show 

significance.  This result illustrates how insensitive the response stage was to reducing 

the workload.  Even at 60% reliability, the values for the response stage were still much 

lower than any other stage. 

 The sixth hypothesis states that all of the models at 80%, 70%, and 60% reliability 

will have an increased workload when compared to their respective 100% reliability 

models.  This hypothesis was partially supported, showing significance in about half of 

the models and no significance in the other half.  The decision stage models showed 

significance in all eight models except when comparing 100% reliability to 70% 

reliability.  The information acquisition stage models showed significance in levels 3 and 

10.  The response stage models showed significance in level 3 at 60% reliability and level 

7 at 70% reliability.  Note that Level 10 Decision Stage model shows significance in the 

negative direction, meaning that the 70% and 60% reliability models reported less 

workload than the 100% reliability model. 

 The seventh hypothesis states that the models in each stage would have 

significantly reduced workload as reliability is reduced.  This hypothesis was not 

supported, showing an interaction p-value of 0.08.  While close to the threshold of 

significance of 0.05, this value is still deemed not significant.  This hypothesis produced 
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different results than the same hypothesis dealing with the performance values, indicating 

how the two dependent variables were affected differently by the independent variables. 

 The eighth hypothesis states that the workload differences between levels will be 

significantly affected by changes in the reliability measures.  The findings do not support 

this hypothesis, producing results that indicate no interactions between the workload 

values of the levels and reliability measures.  This means that any change in reliability 

will not significantly affect the differences between reliability levels. 

Recommendations for Future Research 

While this research focused on stages and levels of automation and reliability, 

there were areas of reliability that were not covered.  Reliance and compliance although 

researched in previous studies, was not addressed in this paper.   Much of the work in 

developing automation focuses on the human receiving a signal from the automation, 

informing the human that something is wrong with the plane.  This signal-based strategy 

focuses entirely on the reliance and compliance of the human as the automation signals 

are perceived by the operator or not.  Reliance and compliance may be adapted for use in 

other automation implementation such as the scenario described in this paper where the 

operator must search for a target and follow it, instead of in a limited capacity of 

informing the operator when something is wrong with the plane.   

 Along the same lines as reliance and compliance, trust is another factor in how 

well the operator and automation function together within the system.  If the operator 

does not have sufficient trust in the automation, then much of the benefit of the 

automation could be lost.  The operator’s workload remains high because the operator 
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verifies the completion of tasks accomplished by the automation.  To increase the 

complexity of this problem, each operator differs in the amount of trust that is placed in 

the automation.  If the amount of trust can be identified, the amount of automation may 

be increased or decreased to suit the operator based on both the workload of the operator 

and the amount of trust the operator has for the automation. 

 With regards to this experiment, DES provided great flexibility in how different 

scenarios may be created.  However, DES does not provide the same data as real human 

subjects because of the assumptions that must be made, thus an extension of this research 

would be to incorporate the different automation implementation found in the DES 

models into the human experiment to better understand the performance and workload of 

the operator.  Each type of experiment has merits, but each type of experiment also has 

flaws.  Complementing this research with further human subject research would provide 

greater insight and validity into the findings of automation implementation into an RPA 

system. 

 Adaptive automation is another area that could be explored with these different 

implementations.  Adaptive automation takes the basis of automation and adds the ability 

to change the amount of automation dedicated to each process at any point in time.  Task 

allocation becomes dynamic rather than static, allowing for allocation to change 

depending on the needs of the operator at a specific point in time.  The ultimate goal of 

adaptive automation is typically to keep the operator from becoming too overworked 

and/or underworked.  With regards to these models, adaptive automation may provide the 

necessary adjustments to keep the operator engaged but not overworked.  It may be able 

to combine the automation from different stages into a single model to allow for 
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automation to take control of a task at any point.  With heightened flexibility, adaptive 

automation could combine all of the positive factors within each stage to create a system 

that can best aid the operator in any situation. 

Final Conclusions 

Many of the results presented above illustrate the diversity of automation 

implementation.  One single type of automation will not be the best solution for every 

system, which is something designers need to keep in mind when designing automation.  

The results presented illustrate the effectiveness of automation when implemented in the 

decision stage with respect to performance.  Any designer looking to improve 

performance may therefore attempt to implement automation at the decision stage for 

best results.  The results also show how the automation can reduce workload drastically 

when the automation is incorporated in the response stage.  Any designer looking to 

reduce operator workload may therefore attempt to implement automation at the response 

stage for best results.  However, the results suggest the need for further study to 

determine if these results are specific to the system studied in this research, or if these 

results are more widely applicable. 
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Appendix A 

Description of Levels and Stages of Automation 

 

L3SA – Computer Offers Alternatives/Information Acquisition 

 In this combination, the automation will display a set of three different search 

pattern suggestions using a separate window.  The human then decides on one of the 

search patterns, closes the window with the different search patterns, and the automation 

completes the search pattern.  The human is not required to follow the suggestions of the 

automation and is only presented with the suggestions.  The window appears one time at 

the beginning of the task.  The human cannot decide to view the window again. 

 

Tasks added into the model: 

• Display Search Patterns (System task) – this task will take zero seconds to 

complete.  It starts a third path in the model, but only runs once automatically.  

The human cannot decide to view the window again. 

• Decide on Search Pattern (Human task) – this task will take a short amount of 

time to complete.  It is located after the task “Display Search Patterns” and ends 

the third path.  The task uses micromodels Choice Reaction Time (x3), Reading 

Rate (6 words), Cursor Movement with Mouse (1000 pixels, 200 pixels), and 

Pushbutton to calculate task time. 

• Run Search Pattern (System task) – this task will take the same amount of time as 

the time it takes to finish the model.  It is the last task in the third path, starting 
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with the task “Display Search Patterns”.  The human cannot change the search 

pattern once the path reaches this task. 

 

Tasks changed in the model: 

• Find HVT (Human task) – this task will take a reduced amount of time to 

complete.  The search patterns will make the time to find the HVT shorter.  Also, 

the workload will increase overall (not in the task) because the human will have to 

think about the next step in the search pattern in addition to all of the other 

workload requirements.  Lastly, the task will now start after the task “Decide on 

Search Pattern”.  The distribution for the time changes from the original 

distribution from using the full group of participants.  The distribution for the 

automation is made up of times gathered from three participants that implemented 

search patterns (subjects 7, 9, and 10). 

 

 

L5SA – Human Approves Selection/Information Acquisition 

 In this combination, the automation will decide upon a search pattern and display 

it through a window.  The human will then have the option, within the window, to 

approve it or deny it.  If denied, then the automation will select another search pattern to 

run.  When the human approves the search pattern, the automation will begin to control 

the camera and complete the search pattern throughout the market while the human 

attempts to locate the target.  At any point, the human can stop the search pattern and take 

over the automation or request another search pattern. 
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Tasks added into the model: 

• Select Search Pattern (System task) – this task will take zero seconds to complete.  

It starts a third path in the model, but only runs once automatically.  The human 

can decide to view the window again if desired. 

• Approve Search Pattern (Human task) – this task will take a short amount of time 

to complete.  It is located after the task “Select Search Pattern” and may loop back 

to it based on whether the human approves the selection or not (probability).  This 

task will require a small amount of workload.  It will use micromodels Reading 

Rate (2 words), Simple Reaction Time, On or Off Response, and Cursor 

Movement with Mouse (1000 pixels, 200 pixels) to calculate task time. 

• Run Search Pattern (System task) – this task will take the same amount of time as 

the time it takes to finish the model.  It is the last task in the third path, starting 

with the task “Select Search Pattern”.  The human cannot change the search 

pattern once the path reaches this task. 

 

Tasks changed in the model: 

• Find HVT (Human task) – this task will take a reduced amount of time to 

complete.  The search patterns will make the time to find the HVT shorter.  Also, 

the workload will reduce because the human will not have to think about the next 

step in the search pattern because the search pattern is completed by the 

automation.  The task will now start after the task “Approve Search Pattern”.  The 

distribution for the time changes from the original distribution from using the full 
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group of participants.  The distribution for the automation is made up of times 

gathered from three participants that implemented search patterns (subjects 7, 9, 

and 10). 

 

 

L7SA – Computer Informs Human of Selection/Information Acquisition 

 In this combination, the automation will decide upon a search pattern and begin to 

execute it.  A window will appear at the beginning of the task showing which search 

pattern was chosen, but the human does not have the ability to change the search pattern.  

At any point, the human may bring up the window to review the search pattern again 

(making the assumption that they will only need to see it once).  Once the task has begun, 

the automation will control the camera and complete the search pattern throughout the 

market while the human attempts to locate the target.   

 

Tasks added into the model: 

• Run Search Pattern (System task) – this task will take the same amount of time as 

the time it takes to finish the model.  It starts a third path in the model, but only 

runs once automatically.  There is no loop or exit from this task.  It is the start of 

the third path of the model. 

• View Search Pattern (Human task) – this task will take a short amount of time to 

complete.  It is located after the task “Run Search Pattern”.  This task will require 

a small amount of workload.  It will use micromodels Reading Rate (2 words) and 

Cursor Movement with Mouse (1000 pixels, 200 pixels) to calculate the task time. 
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Tasks changed in the model 

• Find HVT (Human task) – refer to L5SA.  The task will now start after the task 

“View Search Pattern”. 

 

 

L10SA – Full Automation/Information Acquisition 

 In this combination, the automation will start by running a search pattern.  No 

indicator will appear on the screen to describe the search pattern, so the human does not 

know which search pattern is being used.  Once the task has begun, the automation will 

control the camera and complete the search pattern throughout the market while the 

human attempts to locate the target.  The human will not have the ability to change which 

search pattern is being used. 

 

Tasks added into the model: 

• Run Search Pattern (System task) – this task will take the same amount of time as 

the time it takes to finish the model.  It starts a third path in the model, but only 

runs once automatically.  There is no loop or exit from this task.  It is the only 

task on the third path of the model. 

 

Tasks changed in the model: 

• Find HVT (Human task) – refer to L5SA.  In addition, the human will not have to 

decide on search pattern either, further reducing the workload. 
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L3TC - Computer Offers Alternatives/Decision and Action Selection 

 In this combination, the automation will highlight every person in the virtual 

environment.  As the human moves the sensor to different parts of the market, the 

automation will change the highlight color from green to red when a potential target is 

identified (person with shovel or weapon).  The sensor will need to be zoomed in a 

certain amount to recognize a potential target enough to change the color from green to 

red.  The human cannot zoom out to view the entire marketplace and allow the 

automation to pick out the single HVT because the automation uses the same identifiers 

as the human to identify the HVT.  After the HVT has been chosen, all of the highlights 

go away. 

 

Tasks added in the model: 

• Highlight All People (System task) – this task will take zero seconds to complete.  

It starts a third path in the model, but only runs once automatically.  The human 

cannot ask the automation to re-identify and highlight all of the people in the 

market again. 

• Highlight Potential HVTs (System task) – this task will take zero seconds to 

complete.  It falls on the third path in the model, the next task after the task 

“Highlight All People”.  This model will loop back to itself, only active while the 

human is within the task “Find HVT”.  The human cannot stop this task from 

occurring. 
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Tasks changed in the model: 

• Find HVT (Human task) – this task will take a reduced amount of time to 

complete.  By identifying possible HVTs, the automation is removing some of the 

more obvious distractors and focusing the human attention on certain potential 

HVTs.  The workload does not change because the human is still required to 

complete the same process of identifying the HVT.  The time to complete this 

task will be based upon the participant times from Scenario 3.  Scenario 3 

contains a low camera quality and low number of distractors.  Highlighting the 

object carriers in the market will focus the attention of the operator on certain 

distractors highlighted in red, removing the ones that are only highlighted in green 

from the decision process of the operator.  Scenario 4 with this automation is 

similar to Scenario 3, so the distribution from “Find HVT” in Scenario 3 will be 

used. 

 

 

L5SC - Human Approves Selection/Decision and Action Selection 

 In this combination, the automation will highlight the single HVT identified with 

a green color.  The human will still need to search the market, but as soon as the HVT is 

on the screen, the automation will identify the target.  The automation will then request 

confirmation through a pop-up window.  The operator will view the identified HVT, and 

will either accept or reject the identification.  If the identification is rejected, then the 

highlight is removed from the person.  If the identification is accepted, then the highlight 
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turns from green to red.  The automation will begin the process anew when another HVT 

appears. 

 

Tasks added into the model: 

• Highlight Potential HVT (System task) – this task will take zero seconds to 

complete.  It starts a third path in the model and runs a total of four times.  This 

task is only active while the human is within the task “Find HVT”.  The human 

cannot stop this task from occurring. 

• Approve HVT Selection (Human task) – this task will take a short amount of 

time to complete.  It occurs after the task “Highlight Potential HVT” and will 

loop back to the task “Highlight Potential HVT” when either the human 

disapproves the selection or the HVT enters the tent and another one appears.  

Using micromodels Cursor Movement with Mouse (1000 pixels, 200 pixels), 

Decision Process, Choice Reaction Time (x1), and Mental 

Rotation/Visualization (0 degrees) to calculate the task time. 

 

Tasks changed in the model: 

• Find HVT (Human task) – this task will take a reduced amount of time to 

complete.  By picking out a possible HVT and asking whether the human wants to 

follow it, the automation is removing all other distractors from the clutter on the 

screen and focusing the user attention on one single possible target.  The 

workload will not change because the human will still have to decide whether the 

possible target is the real HVT.  For the task time, refer to “Find HVT” in L3TC. 
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• Lose HVT (Human task) – this task will occur less often.  Since each HVT is 

highlighted and separated from other more obvious distracters, the human will 

have less of a chance to lose the HVT in the crowd after the HVT has already 

been identified. 

 

 

L7SC - Computer Informs Human of Selection/Decision and Action Selection 

 In this combination, the automation will highlight the single HVT identified with 

a red color.  The human will still need to search the market, but as soon as the HVT is on 

the screen, the automation will identify the target.  The automation will then inform the 

user of the HVT selection through a pop-up window.  Once the HVT has been found, the 

human will begin to follow the HVT through the market.  The process will begin anew 

when another HVT appears. 

 

Tasks added into the model: 

• Highlight HVT (System task) – this task will take zero seconds to complete.  

This task comes after the task “Find HVT” and before “View Window”.  The 

human cannot stop this task from occurring.   

• View Window (Human task) – this task will take a small amount of time to 

complete.  It follows the task “Highlight HVT”.  It contains a small amount of 

workload to understand what the automation is explaining.  It continues with the 

task “Follow HVT”.  Using micromodels Cursor Movement with Mouse (1000 
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pixels, 200 pixels), and Mental Rotation/Visualization (0 degrees) to calculate 

the task time. 

 

Tasks changed in the model: 

• Find HVT (Human task) – this task will take a reduced amount of time to 

complete.  By identifying the HVT when it appears on the screen, the automation 

is removing all of the possibility of selecting a distractor.  The workload decreases 

because the human now only needs to locate a highlighted target that is selected 

by the automation.  Reference “Find HVT” in L3SC for task time information. 

• Lose HVT (Human task) – this task will occur less often.  Since each HVT is 

highlighted and separated from other more obvious distracters, the human will 

have less of a chance to lose the HVT in the crowd after the HVT has already 

been identified. 

 

 

L10SC - Full Automation/Decision and Action Selection 

 In this combination the automation will highlight the single HVT identified with a 

red color.  The human will still need to search the market, but as soon as the HVT is on 

the screen, the automation will identify the target.  The automation will not inform the 

user of the target selection.  The human will not have the ability to change the HVT once 

selected. 

 

Tasks added into the model: 
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• Highlight HVT (System task) – this task will take zero seconds to complete.  

This task is located after the task “Find HVT” and before the task “Follow 

HVT”.  The human cannot stop this task from occurring. 

 

Tasks changed in the model: 

• Find HVT (Human task) – this task will take a reduced amount of time to 

complete.  By identifying the HVT when it appears on the screen, the automation 

is removing all of the possibility of selecting a distractor.  The workload decreases 

because the human now only needs to locate a highlighted target that is selected 

by the automation.   Reference “Find HVT” in L3SC for task time information. 

• Lose HVT (Human task) – this task will occur less often.  Since each HVT is 

highlighted and separated from other more obvious distracters, the human will 

have less of a chance to lose the HVT in the crowd after the HVT has already 

been identified. 

 

 

L3SD - Computer offers alternatives/Action Implementation 

 In this combination the automation will wait until the F-key is pressed by the 

human.  Once pressed, the automation will request the human to click on the target to 

follow out of the ones that are on the screen.  A pop up window will be used to request 

identification.  Once the target has been decided upon, the automation will take over 

control of the camera and begin to follow the HVT.  The automation will follow the HVT 

until the HVT enters a tent.  During this time, the human will monitor the automation to 
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confirm that the automation is following the target correctly.  After that, the human will 

resume controls and attempt to locate another target within the market.  This process will 

continue until the last HVT enters the tent.  If the automation was following a HVT and 

lost it, the automation will assume that the HVT entered a tent.  The operator will be 

notified that the automation has stopped following the target with a pop up window. 

 

Tasks added into the model: 

• Request HVT Selection (System task) – this task will take zero seconds to 

complete.  In the model, it will be located after the task “Find HVT”.  It will not 

require any workload, as it is a system task and not a human task. 

• Select HVT (Human task) – this task will take a small amount of time to 

complete.  In the model, it will be located after the task “Request HVT Selection”.  

It will require a little bit of workload in order to select the HVT on the screen.  It 

will continue on to the “Follow HVT” and “Monitor” tasks after completion.  

Using micromodels Cursor Movement with Mouse x2 (500 pixels, 100 pixels) 

(500 pixels, 200 pixels) and Reading Rate (5 words) to calculate task time. 

• Monitor (Human task) – this task will take the same amount of time as the task 

“Follow HVT” to complete.  It follows the task “Select HVT”.  It will require a 

small amount of workload to follow the target that the automation is tracking.  It 

does not continue onto anything after completing. 

• Notification (Human task) – this task will take a small amount of time to 

complete.  In the model, it will be located after the task “Follow HVT” and before 

the tasks “Lose HVT” and “HVT in Tent”.  It will require a little bit of workload 
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to read and close the pop up window.  Using micromodels Cursor Movement with 

Mouse (500 pixels, 200 pixels) and Reading Rate (5 words). 

 

Tasks changed in the model: 

• Follow HVT (System task) – this task will change from a human task to a system 

task, removing all of the workload from this task.  The amount of time spent in 

this task will not change. 

• Lose HVT (System task) – this task will change from a human task to a system 

task, removing all of the workload from this task.  Because the automation is now 

following the HVT through the market, the chance that the HVT will be lost 

depends upon the reliability of the automation in following the HVT. 

 

 

L5SD - Human Approves Selection/Action Implementation 

 In this combination the automation will wait until the F-key is pressed by the 

human.  The automation will highlight a specific target and request confirmation from the 

human that the target highlighted is the one to follow.  The request will appear as a pop-

up window.  The human will accept or deny the request.  If denied, then the automation 

will highlight another target and request confirmation for that target.  Once the target has 

been accepted by the human, the automation will take over control of the camera and 

begin to follow the HVT.  The automation will follow the HVT until the HVT enters a 

tent.  During this time, the human will monitor the automation to confirm that the 

automation is following the target correctly.  After that, the human will resume controls 
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and attempt to locate another target within the market.  This process will continue until 

the last HVT enters the tent.  If the automation was following a HVT and lost it, the 

automation will assume that the HVT entered a tent.  The operator will be notified that 

the automation has stopped following the target with a pop up window. 

 

Tasks added into the model: 

• Request HVT Confirmation (System task) – this task will take zero seconds to 

complete.  In the model, it will be located after the task “Find HVT”.  It will not 

require any workload, as it is a system task and not a human task. 

• Confirm HVT (Human task) – this task will take a small amount of time to 

complete.  In the model, it will be located after the task “Request HVT 

Confirmation”.  It will require a little bit of workload in order to confirm the HVT 

on the screen.  It will continue on to the “Follow HVT” and “Monitor” tasks after 

completion.  Using micromodels Cursor Movement with Mouse (500 pixels, 200 

pixels), Decision Process, Choice Reaction Time (x1), and Mental 

Rotation/Visualization (0 degrees) to calculate task time. 

• Monitor (Human task) – refer to “Monitor” in L3SD. 

• Notification (Human task) – refer to “Notification” in L3SD. 

• Reidentify HVT (Human task) – this task will take a small amount of time to 

complete.  In the model, it is located after the task “Lose HVT” and has a single 

path out of it that continues on to “Request HVT Confirmation”.  Using 

micromodels Cursor Movement with Mouse (500 pixels, 1000 pixels), Decision 

Process, and Pushbutton/Toggle to calculate task time. 
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Tasks changed in the model: 

• Follow HVT (System task) – refer to “Follow HVT” in L3SD. 

• Lose HVT (System task) – refer to “Lose HVT” in L3SD. 

 

 

L7SD - Computer Informs Human of Selection/Action Implementation 

 In this combination the automation will wait until the F-key is pressed by the 

human.  The automation will highlight a specific target and inform the human that the 

target highlighted will be followed.  The information will appear as a pop-up window.  

The automation will then take over control of the camera and begin to follow the HVT.  

The automation will follow the HVT until the HVT enters a tent.  During this time, the 

human will monitor the automation to confirm that the automation is following the target 

correctly.  After that, the human will resume controls and attempt to locate another target 

within the market.  This process will continue until the last HVT enters the tent.  If the 

automation was following a HVT and lost it, the automation will assume that the HVT 

entered a tent.  The operator will be notified that the automation has stopped following 

the target with a pop up window. 

 

Tasks added into the model: 

• Informs of Following (System task) – this task will take zero seconds to complete.  

In the model, it will be located after the task “Find HVT”.  It will not require any 

workload, as it is a system task and not a human task. 
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• View Window (Human task) – this task will take a small amount of time to 

complete.  It follows the task “Informs of Following”.  It contains a small amount 

of workload to understand what the automation is explaining.  It will continue on 

to the “Follow HVT” and “Monitor” tasks after completion.  Using micromodels 

Cursor Movement with Mouse (500 pixels, 200 pixels), and Mental 

Rotation/Visualization (0 degrees). 

• Monitor (Human task) – refer to “Monitor” in L3SD. 

• Notification (Human task) – refer to “Notification” in L3SD. 

• Reidentify HVT (Human task) – refer to “Reidentify HVT” in L5SD.  After 

completing, it continues on to “Informs of Following”. 

 

Tasks changed in the model: 

• Follow HVT (System task) – refer to “Follow HVT” in L3SD. 

• Lose HVT (System task) – refer to “Lose HVT” in L3SD. 

 

 

L10SD - Full Automation/Action Implementation 

 In this combination the automation will wait until the F-key is pressed by the 

human.  The automation will then highlight the HVT, take over control of the camera, 

and begin to follow the HVT.  The automation will follow the HVT until the HVT enters 

a tent.  During this time, the human will monitor the automation to confirm that the 

automation is following the target correctly.  After that, the human will resume controls 

and attempt to locate another target within the market.  This process will continue until 
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the last HVT enters the tent.  If the automation was following a HVT and lost it, the 

automation will assume that the HVT entered a tent.  The operator will be notified that 

the automation has stopped following the target with a pop up window. 

 

Tasks added into the model: 

• Monitor (Human task) – refer to “Monitor” in L3SD. 

• Notification (Human task) – refer to “Notification” in L3SD.  The task follows the 

task “Follow HVT” and continues on to  

• Reidentify HVT (Human task) – refer to “Reidentify HVT” in L5SD 

 

Tasks changed in the model: 

• Follow HVT (System task) – refer to “Follow HVT” in L3SD. 

Lose HVT (System task) – refer to “Lose HVT” in L3SD. 
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Appendix B 

Model Assumptions 

 

Model Task Assumption Assumption Rationale
All Models HVT Appears N/A N/A

All Models Find HVT

Assumes that the performance values presented from the 
study are an accurate indication of the amount of time it 
takes to find a target.  The find target time changes as 
automation is introduced.

This assumption was made because this research assumes that 
automation may affect the amount of time it takes to find a target.

All Models Follow HVT

Assumes that the performance values presented from the 
study are an accurate indication of how long the target 
was followed, and this value changes as automation is 
introduced.  Also assumes that any time the target is on 
the screen after the target was found, the operator is 
following the target.

This assumption was made because this research assumes that 
automation may affect the amount of time it takes to follow a target.

All Models Lose HVT

Assumes that the performance values presented from the 
study are an accurate indication of the amount of time it 
takes to relocate a target, and this value changes as 
automation is introduced.

This assumption was made because this research assumes that 
automation may affect the amount of time it takes to relocate a 
target.

All Models Hear Question Assumes that every question is based on a rectangular 
distribution from 6.12 sec to 6.50 sec

This assumption was made because the data for the length of the 
audio recording  was unavailable, but an IMPRINT micromodel was 
used to estimate the amount of time it would take to read the 
questions out loud.

All Models Consider Question

Assumes that the performance values presented from the 
study are an accurate indication of the amount of time it 
takes to consider the question, and this value does not 
change as automation is introduced.  Also assumes that 
the entire consider question is spent thinking about the 
answer to the question.

This assumption was made because this research assumes that 
automation unrelated to the mathematics question is not going to 
influence the amount of time to consider the question.

All Models Respond Assumes that every answer takes 3 sec to answer.  Also 
assumes that 6% of the questions remian unanswered

This assumption was made because the data for the length of the 
answering period was unavailable, but an IMPRINT micromodel 
was used to estimate the amount of time it would take to speak the 
answer aloud.

All Stage D 
Models

Monitor N/A N/A

All Stage D 
Models Notification

Assumes that the time the operator takes to read and 
close the notification window is based on a rectangular 
distribution from 1.75 sec to 2.91 sec.

This assumption was made in order to incorporate simulated 
automation, as this type of automation was not used in the human 
subject study.  IMPRINT micromodels were used to estimate the 
amount of time to notify the operator.  More detailed information 
on the micromodels used can be found in Appendix A.

All Models 
(Levels 5, 7, 10 in 
Stage D)

Reidentify HVT
Assumes that the time the operator takes to reidentify the 
HVT is based on a rectangular distribution from 1.13 sec 
to 1.88 sec.

This assumption was made in order to incorporate simulated 
automation, as this type of automation was not used in the human 
subject study.  IMPRINT micromodels were used to estimate the 
amount of time to reidentify the HVT.  More detailed information 
on the micromodels used can be found in Appendix A.
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Model Task Assumption Assumption Rationale

Level 3 Stage A Decide on Search Pattern
Assumes that the time it takes to decide on a search 
pattern follows a rectangular distribution from 2.96 sec to 
4.94 sec.

This assumption was made in order to incorporate simulated 
automation, as this type of automation was not used in the human 
subject study.  IMPRINT micromodels were used to estimate the 
amount of time to decide on a search pattern.  More detailed 
information on the micromodels used can be found in Appendix A.

Level 3 Stage D Select HVT
Assumes that the time it takes to select a HVT follows a 
rectangular distribution from 2.70 sec to 4.50 sec.

This assumption was made in order to incorporate simulated 
automation, as this type of automation was not used in the human 
subject study.  IMPRINT micromodels were used to estimate the 
amount of time to select a HVT.  More detailed information on the 
micromodels used can be found in Appendix A.

Level 5 Stage A Approve Search Pattern
Assumes that the time it takes to approve a search 
pattern follows a rectangular distribution from 1.53 sec to 
2.55 sec.

This assumption was made in order to incorporate simulated 
automation, as this type of automation was not used in the human 
subject study.  IMPRINT micromodels were used to estimate the 
amount of time to approve the search pattern.  More detailed 
information on the micromodels used can be found in Appendix A.

Level 5 Stage C Approve HVT Selection
Assumes that the time it takes to approve a HVT 
selection follows a rectangular distribution from 1.87 sec 
to 3.11 sec.

This assumption was made in order to incorporate simulated 
automation, as this type of automation was not used in the human 
subject study.  IMPRINT micromodels were used to estimate the 
amount of time to approve the HVT selection.  More detailed 
information on the micromodels used can be found in Appendix A.

Level 5 Stage D Confirm HVT
Assumes that the time it takes to confirm a HVT follows a 
rectangular distribution from 1.80 sec to 3.00 sec.

This assumption was made in order to incorporate simulated 
automation, as this type of automation was not used in the human 
subject study.  IMPRINT micromodels were used to estimate the 
amount of time to confirm the HVT selection.  More detailed 
information on the micromodels used can be found in Appendix A.

Level 7 Stage A View Search Pattern
Assumes that the time it takes to view a search pattern 
follows a rectangular distribution from 1.30 sec to 2.16 
sec.

This assumption was made in order to incorporate simulated 
automation, as this type of automation was not used in the human 
subject study.  IMPRINT micromodels were used to estimate the 
amount of time to view the search pattern.  More detailed 
information on the micromodels used can be found in Appendix A.

Level 7 Stage C View Window
Assumes that the time it takes to view the window follows 
a rectangular distribution from 1.70 sec to 2.84 sec.

This assumption was made in order to incorporate simulated 
automation, as this type of automation was not used in the human 
subject study.  IMPRINT micromodels were used to estimate the 
amount of time to view the HVT.  More detailed information on the 
micromodels used can be found in Appendix A.

Level 7 Stage D View Window Assumes that the time it takes to view the window follows 
a rectangular distribution from 1.64 sec to 2.73 sec.

This assumption was made in order to incorporate simulated 
automation, as this type of automation was not used in the human 
subject study.  IMPRINT micromodels were used to estimate the 
amount of time to view the confirmation to follow the HVT.  
More detailed information on the micromodels used can be found in 
Appendix A.

Reliability Models 
(All Levels in 
Stages A and C)

Find Failure
Assumes that the operator act of disovering a failure is a 
random portion of the amount of time that the HVT 
would be found.

This assumption was made in order to incorporate different 
reliabilities of simulated automation, as automation and consequently 
the possibility of failing automation, was not used in the human 
subject study.  A random number between 0-1 was generated and 
multiplied by a number chosen from the distribution of the HVT find 
time in the task "Find HVT" to determine the amount of time it took 
for the human operator to discover the failure.
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Model Task Processing (Task) Times Effects Decision Logic

All Models HVT Appears 15 sec after the end of the third target; 0 sec every other 
time

Adds another target to the target counter; resets the time to find the 
specific target to 0

N/A

All Models Find HVT Distribution based on the human subject times N/A N/A

All Models Follow HVT Distribution based on the human subject times Calculates the performance score for the specific target

If the task time does not 
reach the time at which the 
target enters the tent, the 
next task is "Lose HVT".  
Otherwise, the next task is 
"HVT in Tent".

All Models Lose HVT Distribution based on the human subject times N/A

If the task time does not 
reach the time at which the 
target enters the tent, the 
next task is "Follow HVT".  
Otherwise, the next task is 
"HVT in Tent".

All Models Hear Question Distribution based on an IMPRINT micromodel Adds another question to the question counter N/A
All Models Consider Question Distribution based on the human subject times Calculates the amount of time spent considering the question N/A

All Models Respond Distribution based on an IMPRINT micromodel Calculates the communication score for the specific question

If the fourth question has 
been asked, then there is 
no further task.  Otherwise, 
the next task is "Question 
Delay".

All Stage D 
Models

Monitor Amount of time that remains to follow the specific HVT N/A N/A

All Stage D 
Models

Notification Distribution based on IMPRINT micromodels N/A

If the task time does not 
reach the time at which the 
target enters the tent, the 
next task is "Lose HVT".  
Otherwise, the next task is 
"HVT in Tent".

All Models 
(Levels 5, 7, 10 in 
Stage D)

Reidentify HVT Distribution based on IMPRINT micromodels N/A N/A

Level 3 Stage A Decide on Search Pattern Distribution based on IMPRINT micromodels N/A N/A

Level 3 Stage D Select HVT Distribution based on IMPRINT micromodels Calculates how long the operator will have to find the target after 
selecting a HVT

N/A

Level 5 Stage A Approve Search Pattern Distribution based on IMPRINT micromodels Updates model to include that a search pattern has been approved

If the search pattern has 
been approved, the next 
task is "Run Search 
Pattern".  Otherwise, the 
next task is "Select Search 
Pattern".

Level 5 Stage C Approve HVT Selection Distribution based on IMPRINT micromodels N/A N/A

Level 5 Stage D Confirm HVT Distribution based on IMPRINT micromodels Calculates how long the operator will have to find the target after 
confirming a HVT

N/A

Level 7 Stage A View Search Pattern Distribution based on IMPRINT micromodels N/A N/A
Level 7 Stage C View Window Distribution based on IMPRINT micromodels N/A N/A

Level 7 Stage D View Window Distribution based on IMPRINT micromodels Calculates how long the operator will have to find the target after 
confirming a HVT

N/A

Reliability Models 
(All Levels in 
Stages A and C)

Find Failure
Distribution based on distribution used in the task "Find 
HVT" N/A N/A

Notes: All system tasks are not included because they are assumed to be unaffected by any change in the automation or relibility.
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